
AN045: 3-Act FSM 
 

1 
© Active Optical Systems, LLC 

 

1 Introduction 

One common fast steering mirror (FSM) design involves placing three actuators in a triangular pattern and 
pushing each actuator normal to the mirror surface against some reaction mass.  Figure 1 shows an example 
fast steering mirror in this architecture.  The three white columns represent the actuators.  The blue top piece 
is the mirror.  The gray bottom piece is the reaction mass.   

 
Figure 1: Example 3-Actuator FSM Architecture 

 
Figure 2 shows a top view of the mirror surface, the location of three actuators, and labels of the actuators.   
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Figure 2: Actuator Location Definition on the Mirror Surface (Top View) 

The relationship between the mirror tilt and the actuator displacement can be represented by the linear 
algebra equation, 
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where X and Y are the tilts in each of these directions and A1, A2, and A3 are the actuator displacements.  This 
equation does not provide any additional constraint on the overall piston of the mirror.  This matrix can be 
inverted to relate the desired tilt in the two axes to the actuator commands.  If there is no noise in the system 
(actuator gain variation, sensor noise, etc.), the matrix will invert to impose no additional net piston to the 
actuators.  Sometimes system non-idealities can cause the actuator commands to favor two actuators above 
the other one.  For example, actuation of A2 and A3 together will induce Y tilt and differentially will induce X 
tilt.  This piston term can cause a walk of the beam on the FSM and, in some cases, can cause a reduction in 
the tilt range in one axis.   
 

1.1 Solution: Added Constraint 

To eliminate the piston term from the system, we can add a constraint to the matrix that the sum of the 
actuator commands must equal zero.  The new equation representing this is 
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The final row forces the sum of the actuator commands to equal zero.  Inversion of this matrix now produces a 
3x3 matrix that is fully constrained given by   
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Since the input vector always has 0 as the final element, the final column of the inverted matrix can be 
eliminated to reduce the computational load, producing the matrix,  

 

  



















3/130tan

3/130tan

3/20

. 

The Matlab code in the appendix of this application note demonstrates this approach. 
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2 Conclusions 

In this application note we have shown that we can add a row to the matrix relating tilt and actuator 
command prior to inversion to force the solution to have no net piston term for a 3-actuator fast steering 
mirror.     
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3 Appendix: Example Analysis Code  

% Example conditioning code for a 3-actuator FSM 
clear all; clc; close all; 
SF = pi/180; 
M = [0 -cos(30*SF) +cos(30*SF); 
    1 -cos(60*SF) -cos(60*SF); 
    1/3 1/3 1/3]; 

  
%% show matrix, inverse, and condition 
M 
condition = cond(M) 
Minv = inv(M) 

  
%% plot result 
nf;  
subplot(1,2,1); imagesc(M); title('poke'); 
subplot(1,2,2); imagesc(Minv); title('ctrl'); 

  
%% what is the sum per dimension 
sum(M') 

  
%% what is an example command  
offset = [1; 0.5; 0] 

  
dc = Minv * offset 
piston = sum(dc) 

  
%% can I eliminate the last column 
Minv2 = Minv(:,1:2) 
dc2 = Minv2 * offset(1:2,1) 
piston = sum(dc2) 

 

 

 
 


