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Abstract 

In this application note we show that there is an inverse relationship between the resonance frequency and 
the maximum inter-actuator throw for plate-type deformable mirrors. 

Introduction 

We often get requests for deformable mirrors that specify both a large inter-actuator stroke and a high 
resonance frequency.  Unfortunately, this is not always possible due to physical limitations of the plate-type 
DM architecture and the materials we use in its construction.  In this application note, we use basic plate 
theory to illustrate this relationship.  
 
The basic architecture of a plate-type deformable mirror is an array of actuators bonded to a faceplate and a 
thicker base plate.  For this analysis, we are only concerned with the faceplate bonded to actuators.  One of 
the advantages of the plate-type DM architecture is that the first resonance is typically dominated by the 
portion of the faceplate that is supported between two actuators.  Therefore the DM actuator count can be 
scaled without reducing the resonance frequency. 
 

 
Figure 1 – Basic Plate-type DM Architecture 

 
For a basic understanding of the relationship between the inter-actuator throw and the resonance frequency, 
we can analyze a section of faceplate spanning the gap between two actuators by simplifying the mechanical 
model of the DM faceplate to that of a clamped plate.  Timoshenko provides analysis of plates with a variety of 
boundary conditions and applied force conditions.1  For a circular plate with clamped edges, the maximum 
deflection for a point load at the center is given by, 
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where   is Poisson’s ratio, a is the radius, P is the applied force, and D is given by, 
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The maximum stress can be approximated by,  
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We can approximate the first resonance using the classic formula derived from F=ma=kx given by, 

m

k
f 2  

where m is the mass is approximated by  2ha , k is the ratio of force to deflection, and   is the density of 
the faceplate.   
 
Figure 2 shows these relationships for a silicon faceplate varying in thickness from 0.5 to 2.0 mm and a 
deflection for a 50 N force.  We can see in these results that the increasing thickness reduces both the 
deflection and stress and increases the first resonance.  We generally found the results to be consistent with 
our laboratory results, but the resonance frequency was significantly higher than our laboratory results. 

 
Figure 2 – Clamped plate deflection, stress, and resonance frequency as a function of plate thickness 
 
The limit to the inter-actuator throw of a plate-type DM is the stress induced by this throw.  This stress can 
result in fracture of the faceplate or the bonds holding the DM components together.  The bond stress will be 
related to the faceplate stress but not exactly equal to it.  We next found the deflection for a 20 MPa stress for 
each of the thicknesses.  Figure 3 shows the deflection against the resonance frequency.  This plot clearly 
shows that increasing the resonance frequency reduces the maximum inter-actuator throw.  
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Figure 3 - Relationship between maximum deflection for a 20 MPa stress and the resonance frequency 
 

Engineering Plate-Type DMs 

There are both material and engineering parameters that can be used to adjust both the resonance frequency 
and the maximum inter-actuator throw.  The maximum inter-actuator stroke for a given maximum faceplate 
stress is given by,  
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The resonance frequency is expressed by, 
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In each of the equations above, we reduced the equation into most of the fundamental dependencies without 
the Poissions ratio term.  This reduction is not perfectly accurate because of some of the terms that were 
eliminated, but is useful to illustrate the key parameters in the frequency  The product of the dependences of 
the frequency and the maximum inter-actuator displacement is given by 
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Therefore, to increase both the resonance frequency and the throw simultaneously, the density and the 
modulus need to be decreased.  The density decrease will obviously decrease the mass and increase the 
resonance frequency.  The less obvious change is the decrease in the modulus.  This decrease reduces the 
effective spring constant, which enables less force to be able to move the faceplate and generates less stress, 
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but only reduces the resonance frequency by the square-root of the reduction.  While it may be possible to 
find better materials for the DM faceplate, there are a limited number of materials that are suitable for other 
reasons like achieving a good polish and the ability to be coated for reflectivity. 
 
Figure 4 shows a comparison of different materials.  Table 1 shows the materials parameters used in the 
analysis.  These materials were chosen because they illustrate the relationship derived above rather well.  
When comparing silicon and fused silica, the density is almost the same, but the modulus is 2.6 times larger for 
silicon.  When comparing fused silica and carbon fiber, the modulus is nearly the same, but the density is 
reduced by a factor of 1.4.  Carbon fiber, being the lowest density and the lowest modulus offers the best 
range of performance for a deformable mirror, but achieving other properties key to DM performance like 
surface polish and high quality coatings may be difficult. 

 
Figure 4 - Comparison of Deflection to Frequency Performance for Various Materials 

 
 

Table 1- Key Materials Parameters for DM Analysis 

Material Modulus (GPa) Poissions Ratio Density (kg/m3) 

Silicon 185 0.28 2330 

Fused Silica 72 0.17 2203 

Carbon Fiber 70 0.1 1600 

 
 

Conclusions 

From this analysis we established that there was an inverse relationship between inter-actuator throw and 
resonance frequency for plate-type DMs.  There are some engineering and material parameters that can affect 
both quantities, but the mechanics of the plate-type DM architecture prevent a realistic arbitrary control of 
both throw and resonance.   
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Appendix: Matlab Analysis Code 

% study of inter-actuator limits 
% Timoshenko - Circular Plate Loaded at the Center, p. 67-72 
setup; 
ppt=1; 

  
hvec = [0.5:0.01:2.0] * 1e-3; %thickness 
material = 1; materialLabel{1} = 'Silicon'; 
material = 2; materialLabel{2} = 'Fused Silica'; 
material = 3; materialLabel{3} = 'Carbon Fiber'; 
for material=1:length(materialLabel); 
    if (ppt) 
        TitleSlidePowerPoint(materialLabel{material}); 
    end; 
    if (material==1) %silicon 
        %wikipedia 
        nu = 0.28; 
        density = 2330; %2.33 g/cc =  2330 kg/m^3 
        E = 185e9; %pascal 
    elseif (material==2) 
        %wikipedia 
        nu = 0.17; 
        density = 2203; %2.33 g/cc =  2330 kg/m^3 
        E = 72e9; %pascal 
    else 
        %http://www.performance-

composites.com/carbonfibre/mechanicalproperties_2.asp 
        nu = 0.1; 
        density = 1600; %2.33 g/cc =  2330 kg/m^3 
        E = 70e9; %pascal 
    end; 

     
    a = 6e-3; 
    P = 50.0; 
    delta = 1e-6; 
    stressMax = 20e6; 
    for ii=1:length(hvec); 
        h = hvec(ii); 
        D = (E .* h.^3) ./ (12 .* (1-nu.^2)); 
        stress(ii) = P./h^2 * ( (1+nu) * (0.485 * log(a./h) + 0.52) + 0.48); 

         
        % clamped plate 
        deflection(ii) = P / (16*pi*D) * a^2; 
        k = P ./ deflection(ii); 
        m = (pi * a^2 * h) * density; 
        f(ii) = sqrt(k/m) / (2.0*pi); 

         
        %reverse solve for P 
        Pcalc = delta * k; 
        stressCalc(ii) = Pcalc./h^2 * ( (1+nu) * (0.485 * log(a./h) + 0.52) + 

0.48); 

         
        %for a fixed stress, what is the throw 
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        Pcalc = stressMax .* h^2  ./ ( (1+nu) * (0.485 * log(a./h) + 0.52) + 

0.48); 
        deflectionCalc(ii) = Pcalc ./ k; 

         
    end; 

     
    %% summary 1 
    nf([ 286          58        1055         630]); 
    subplot(2,3,1); 
    plot(deflection,stress); 
    xlabel('deflection'); 
    ylabel('stress'); 

     
    subplot(2,3,2); 
    plot(f,stress); 
    xlabel('frequency'); 
    ylabel('stress'); 

     
    subplot(2,3,3); 
    loglog(f,deflectionCalc); 
    plot(f,deflectionCalc); 
    xlabel('Frequency'); 
    ylabel(sprintf('Deflection for a %.1f MPa Stress',stressMax./1e6)); 

     
    subplot(2,3,4); 
    semilogy(hvec,deflection); 
    ylabel('deflection'); 
    xlabel('thickness'); 

     
    subplot(2,3,5); 
    semilogy(hvec,stress); 
    ylabel('stress'); 
    xlabel('thickness'); 

     
    subplot(2,3,6); 
    plot(hvec,f); 
    ylabel('frequency'); 
    xlabel('thickness'); 
    if (ppt) 
        ToPPT() 
    end; 

     
    %% summary 2 
    nf([156         354        1185         334]); 
    subplot(1,3,1); 
    semilogy(hvec,deflection); 
    ylabel('deflection'); 
    xlabel('thickness'); 

     
    subplot(1,3,2); 
    semilogy(hvec,stress); 
    ylabel('stress'); 
    xlabel('thickness'); 

     
    subplot(1,3,3); 
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    plot(hvec,f); 
    ylabel('frequency'); 
    xlabel('thickness'); 
    if (ppt) 
        ToPPT() 
    end; 

     
    %% conclusion 
    nf; 
    plot(f,deflectionCalc); 
    xlabel('Frequency'); 
    ylabel(sprintf('Deflection for a %.1f MPa Stress',stressMax./1e6)); 
    if (ppt) 
        ToPPT() 
    end; 
    fSave{material}=f; 
    deflectionSave{material}=deflectionCalc; 
    close all; 
end; 

  
%% final conclusion 
if (ppt) 
    TitleSlidePowerPoint('Summary'); 
end; 
nf; 
for material=1:length(materialLabel); 
    plot(fSave{material},deflectionSave{material},getLineSpec(material)); 
    hold on; 
end; 
xlabel('Frequency'); 
ylabel(sprintf('Deflection for a %.1f MPa Stress',stressMax./1e6)); 
legend(materialLabel,'Location','Best'); 
if (ppt) ToPPT(); end; 
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