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This application note describes how to model the error rejection ratio from an integrator 
control system with latency.  This application note applies to any control system using this form 
of control including adaptive optics systems and optical trackers. 

Control Methodology 

In this application note, we are analyzing the performance of a simple integrator control system with 
a discrete-time modeling approach.  The Matlab code for this control model is in the appendix.  In 
our model, we are including the effect of processing latency between signal sampling and command 
execution.  In this model, we are not including the actuator dynamics, but it could be easily added.  
The model begins by establishing a logarithmic spaced set of frequencies for analysis.  At each 
frequency, a discrete-time performance of the system is evaluated over three periods at the sample 
resolution that is equal to 10 times the signal sample (measurement) rate.  This will enable us to see 
the effect of the control system at a higher resolution than the sample rate.   
 
This model works on an event-based methodology.  The first sample is taken at t=0 s.  After the 
sample is taken, the new command is calculated and added to a first-in-first-out (FIFO) command 
queue.  This new command is scheduled to be applied at the current time plus the latency time, 
which is given in the header as a multiple of the sample (aka measurement) period.  Commands are 
calculated as the prior command times a leak factor, which is typically slightly below 1.0, minus the 
error times a gain factor, which is typically a negative value between 0 and -1.0.  When the new 
command is applied, it is removed from the command queue to setup the next command.  In our 
model, the root-mean-square (RMS) difference between the signal and the command is calculated 
to determine the efficacy of the control system.  The reduction ratio is the ratio of the rms amplitude 
of the error (signal minus command) to the rms of the signal.   
 
Figure 1 shows the error rejection ratio function determined by executing the code in the appendix.  
The control model was for a 2500 Hz measurement rate, a gain of -60%, a 0.99 leak factor, and a 1.5x 
latency, which corresponds to 600 μs.  The low-frequency response fairly closely follows the 
expected 20 dB per decade slope.  The unity gain cross-over is at about 179 Hz.  The high gain causes 
a significant 7.5 dB overshoot, which peaks around 375 Hz.  This peak is at a frequency 
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approximately 6.7 times less than the sample frequency.  The overshoot crosses the unity gain point 
again at about 800 Hz, which is about 3 times less than the sample frequency. 
 
 

 
Figure 1 - Error Rejection Ratio determined by the Matlab time-domain control model. 
 
There are two different ways of calculating the new command in the script below.  The current 
method is : 
            newcmd(end+1) = leak*newcmd(end) - gain*err; 

An alternative method is: 
newcmd(end+1) = leak*cmd - gain*err;  

In doing some subsequent experimentation, we have generally found that second method causes 
significantly less overshoot, but a reduced unity-gain cross-over as well.  The result of this change to 
the system is shown below in Figure 2. 
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Figure 2 - Error Rejection with command based on current command. 

 

Effect of Latency on the Error Rejection Ratio 

Using this script as a base, we studied the effect of latency on the error rejection ratio.  We 
used the first command control methodology discussed above which was based on the 
previously sent command instead of the currently executing command.  Figure 3 shows the 
error rejection for different amount of latency. 
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Figure 3 - Effect of Latency on Error Rejection 
 
Figure 4 shows the effect of latency on the unity gain frequency.  

 
Figure 4 – Effect of latency on the unity gain frequency 

 

Effect of Gain on Error Rejection Ratio 

Figure 5 shows the results of using this model to study the effect of gain on the error rejection ratio.   

 
Figure 5 - Error Rejection Ratio for Varying Gain 

Figure 6 (a) shows the effect of control gain on the unity gain frequency.  Figure 6 (b) shows the 
overshoot of the error rejection ratio with respect to the control gain. 
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(a) (b) 

Figure 6 - The unity gain frequency (a) and the overshoot (b) with respect to the gain. 
 

Conclusions 

This application note presents a simple model for time-domain control and explores the 
effect of latency and control gain on the error rejection ratio.  In the future, this script can be 
extended to include additional effects like actuator dynamics and more advanced control 
methodologies. 
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Appendix: Full Matlab Code 

%Time Domain Control Simulation 
close all; clear all; clc; 
dbg=0; 
fsample = 2500; %11x11 sub-apertures,  88x88 pixels 
gain = -0.6; 
leak = 0.99; 
dtSample = 1/fsample 
dtLatency = 1.5 * dtSample 
dt = dtSample * 0.1; 
fv = logspace(1,3,100); 
frequencyMax=max(fv) 

  
%scan over frequency 
if (dbg) figure; end; 
b=0; 
for f = fv; 
    b=b+1; 
    tmax =3/f; %three periods 

     
    %clear saving variables 
    clear errSave; 
    clear cmdSave; 
    clear signalSave; 
    clear newcmd; 
    clear applyCmd; 

     
    cmd=0; 
    err=0; 
    sampleTime=0; 
    applyCmd(1) = sampleTime + dtLatency; 
    c=0; 
    newcmd(1)=0; 
    for t = 0:dt:tmax 
        c=c+1; 
        signal = sin(2*pi*f*t); 
        if (t>sampleTime) 
            %newcmd is a FIFO queue 
            newcmd(end+1) = leak*newcmd(end) - gain*err; 

%newcmd(end+1) = leak*cmd - gain*err; % alternative approach 

  % which is likely better 
            applyCmd(end+1) = sampleTime + dtLatency; 
            sampleTime = sampleTime + dtSample; 
        end; 
        if (length(applyCmd)>1) 
            if (t>applyCmd(2)) 
                cmd = newcmd(2); 
                %newcmd is a FIFO queue 
                newcmd = newcmd(2:end); 
                applyCmd = applyCmd(2:end); 
            end; 
        end; 
        err = signal - cmd; 
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        signalSave(c)=signal; 
        cmdSave(c)=cmd; 
        errSave(c)=err; 
    end; 

     
    if (dbg) 
        clf; 
        plot(signalSave,'r*-'); 
        hold on; 
        plot(cmdSave,'bo-'); 
        plot(errSave,'g--'); 
        legend('signal','command','error'); 
        drawnow; 
    end; 
    rmsError(b)=RMS(errSave); 
    rmsSignal(b)=RMS(signalSave); 
end; 
%% summarize results 
figure; 
rmsErrdB=20*log10(rmsError./rmsSignal); 
Overshoot = max(rmsErrdB) 
semilogx(fv,rmsErrdB,'b-','linewidth',2); 
xlabel('Frequency(Hz)'); 
ylabel('Error Rejection (dB)'); 
grid on; 
hold on; 
fc=200; 
hold on; 
ideal = 20 * log10(fv); 
ideal = ideal - ideal(1) + rmsErrdB(1); 
for ii=1:length(fv)-1; 
    if (rmsErrdB(ii)<0 &&rmsErrdB(ii+1)>=0) break; end; 
end; 
mi=ii; 
title(sprintf('Unity Gain Crossover = %.1f Hz',fv(mi))); 
semilogx(fv,ideal,'r--','linewidth',2); 
unityGainOffset = (ideal(mi)-rmsErrdB(mi)); 
semilogx(fv,ideal - unityGainOffset,'m--','linewidth',2); 
semilogx(fv,fv.*0+0,'g--','linewidth',2); 
legend('Response','20 dB/dec Asymptote','20 dB/dec at Unity Gain','Unity 

Gain','Location','Best'); 

  

 

 


