
AN022: Error Rejection with an Integrator Control System

1
© Active Optical Systems, LLC

This application note describes how to model the error rejection ratio from an integrator
control system with latency. This application note applies to any control system using this form
of control including adaptive optics systems and optical trackers.

Control Methodology

In this application note, we are analyzing the performance of a simple integrator control system with
a discrete-time modeling approach. The Matlab code for this control model is in the appendix. In
our model, we are including the effect of processing latency between signal sampling and command
execution. In this model, we are not including the actuator dynamics, but it could be easily added.
The model begins by establishing a logarithmic spaced set of frequencies for analysis. At each
frequency, a discrete-time performance of the system is evaluated over three periods at the sample
resolution that is equal to 10 times the signal sample (measurement) rate. This will enable us to see
the effect of the control system at a higher resolution than the sample rate.

This model works on an event-based methodology. The first sample is taken at t=0 s. After the
sample is taken, the new command is calculated and added to a first-in-first-out (FIFO) command
queue. This new command is scheduled to be applied at the current time plus the latency time,
which is given in the header as a multiple of the sample (aka measurement) period. Commands are
calculated as the prior command times a leak factor, which is typically slightly below 1.0, minus the
error times a gain factor, which is typically a negative value between 0 and -1.0. When the new
command is applied, it is removed from the command queue to setup the next command. In our
model, the root-mean-square (RMS) difference between the signal and the command is calculated
to determine the efficacy of the control system. The reduction ratio is the ratio of the rms amplitude
of the error (signal minus command) to the rms of the signal.

Figure 1 shows the error rejection ratio function determined by executing the code in the appendix.
The control model was for a 2500 Hz measurement rate, a gain of -60%, a 0.99 leak factor, and a 1.5x
latency, which corresponds to 600 μs. The low-frequency response fairly closely follows the
expected 20 dB per decade slope. The unity gain cross-over is at about 179 Hz. The high gain causes
a significant 7.5 dB overshoot, which peaks around 375 Hz. This peak is at a frequency

AN022

Error Rejection with an Integrator Control System

Author: Justin Mansell
Revision: 11/13/10

AN022: Error Rejection with an Integrator Control System

2
© Active Optical Systems, LLC

approximately 6.7 times less than the sample frequency. The overshoot crosses the unity gain point
again at about 800 Hz, which is about 3 times less than the sample frequency.

Figure 1 - Error Rejection Ratio determined by the Matlab time-domain control model.

There are two different ways of calculating the new command in the script below. The current
method is :
 newcmd(end+1) = leak*newcmd(end) - gain*err;

An alternative method is:
newcmd(end+1) = leak*cmd - gain*err;

In doing some subsequent experimentation, we have generally found that second method causes
significantly less overshoot, but a reduced unity-gain cross-over as well. The result of this change to
the system is shown below in Figure 2.

10
1

10
2

10
3

-30

-25

-20

-15

-10

-5

0

5

10

15

Frequency(Hz)

E
rr

o
r

R
e
je

c
ti
o
n
 (

d
B

)
Unity Gain Crossover = 178.9 Hz

Response

20 dB/dec Asymptote

20 dB/dec at Unity Gain

Unity Gain

AN022: Error Rejection with an Integrator Control System

3
© Active Optical Systems, LLC

Figure 2 - Error Rejection with command based on current command.

Effect of Latency on the Error Rejection Ratio

Using this script as a base, we studied the effect of latency on the error rejection ratio. We
used the first command control methodology discussed above which was based on the
previously sent command instead of the currently executing command. Figure 3 shows the
error rejection for different amount of latency.

10
1

10
2

10
3

-25

-20

-15

-10

-5

0

5

10

15

20

Frequency(Hz)

E
rr

o
r

R
e
je

c
ti
o
n
 (

d
B

)

Unity Gain Crossover = 163.0 Hz

Response

20 dB/dec Asymptote

20 dB/dec at Unity Gain

Unity Gain

10
1

10
2

10
3

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

Frequency(Hz)

E
rr

o
r

R
e
je

c
ti
o
n
 (

d
B

)

Unity Gain

Latency = 0.0 * dt
sample

Latency = 0.3 * dt
sample

Latency = 0.5 * dt
sample

Latency = 0.8 * dt
sample

Latency = 1.0 * dt
sample

Latency = 1.3 * dt
sample

Latency = 1.5 * dt
sample

AN022: Error Rejection with an Integrator Control System

4
© Active Optical Systems, LLC

Figure 3 - Effect of Latency on Error Rejection

Figure 4 shows the effect of latency on the unity gain frequency.

Figure 4 – Effect of latency on the unity gain frequency

Effect of Gain on Error Rejection Ratio

Figure 5 shows the results of using this model to study the effect of gain on the error rejection ratio.

Figure 5 - Error Rejection Ratio for Varying Gain

Figure 6 (a) shows the effect of control gain on the unity gain frequency. Figure 6 (b) shows the
overshoot of the error rejection ratio with respect to the control gain.

AN022: Error Rejection with an Integrator Control System

5
© Active Optical Systems, LLC

(a) (b)

Figure 6 - The unity gain frequency (a) and the overshoot (b) with respect to the gain.

Conclusions

This application note presents a simple model for time-domain control and explores the
effect of latency and control gain on the error rejection ratio. In the future, this script can be
extended to include additional effects like actuator dynamics and more advanced control
methodologies.

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

80

100

120

140

160

180

200

220

Gain

U
n
it
y
 G

a
in

 F
re

q
u
e
n
c
y
 (

H
z
)

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

0

2

4

6

8

10

12

14

Gain

O
v
e
rs

h
o
o
t

(d
B

)

AN022: Error Rejection with an Integrator Control System

6
© Active Optical Systems, LLC

Appendix: Full Matlab Code

%Time Domain Control Simulation
close all; clear all; clc;
dbg=0;
fsample = 2500; %11x11 sub-apertures, 88x88 pixels
gain = -0.6;
leak = 0.99;
dtSample = 1/fsample
dtLatency = 1.5 * dtSample
dt = dtSample * 0.1;
fv = logspace(1,3,100);
frequencyMax=max(fv)

%scan over frequency
if (dbg) figure; end;
b=0;
for f = fv;
 b=b+1;
 tmax =3/f; %three periods

 %clear saving variables
 clear errSave;
 clear cmdSave;
 clear signalSave;
 clear newcmd;
 clear applyCmd;

 cmd=0;
 err=0;
 sampleTime=0;
 applyCmd(1) = sampleTime + dtLatency;
 c=0;
 newcmd(1)=0;
 for t = 0:dt:tmax
 c=c+1;
 signal = sin(2*pi*f*t);
 if (t>sampleTime)
 %newcmd is a FIFO queue
 newcmd(end+1) = leak*newcmd(end) - gain*err;

%newcmd(end+1) = leak*cmd - gain*err; % alternative approach

 % which is likely better
 applyCmd(end+1) = sampleTime + dtLatency;
 sampleTime = sampleTime + dtSample;
 end;
 if (length(applyCmd)>1)
 if (t>applyCmd(2))
 cmd = newcmd(2);
 %newcmd is a FIFO queue
 newcmd = newcmd(2:end);
 applyCmd = applyCmd(2:end);
 end;
 end;
 err = signal - cmd;

AN022: Error Rejection with an Integrator Control System

7
© Active Optical Systems, LLC

 signalSave(c)=signal;
 cmdSave(c)=cmd;
 errSave(c)=err;
 end;

 if (dbg)
 clf;
 plot(signalSave,'r*-');
 hold on;
 plot(cmdSave,'bo-');
 plot(errSave,'g--');
 legend('signal','command','error');
 drawnow;
 end;
 rmsError(b)=RMS(errSave);
 rmsSignal(b)=RMS(signalSave);
end;
%% summarize results
figure;
rmsErrdB=20*log10(rmsError./rmsSignal);
Overshoot = max(rmsErrdB)
semilogx(fv,rmsErrdB,'b-','linewidth',2);
xlabel('Frequency(Hz)');
ylabel('Error Rejection (dB)');
grid on;
hold on;
fc=200;
hold on;
ideal = 20 * log10(fv);
ideal = ideal - ideal(1) + rmsErrdB(1);
for ii=1:length(fv)-1;
 if (rmsErrdB(ii)<0 &&rmsErrdB(ii+1)>=0) break; end;
end;
mi=ii;
title(sprintf('Unity Gain Crossover = %.1f Hz',fv(mi)));
semilogx(fv,ideal,'r--','linewidth',2);
unityGainOffset = (ideal(mi)-rmsErrdB(mi));
semilogx(fv,ideal - unityGainOffset,'m--','linewidth',2);
semilogx(fv,fv.*0+0,'g--','linewidth',2);
legend('Response','20 dB/dec Asymptote','20 dB/dec at Unity Gain','Unity

Gain','Location','Best');

