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This application note discusses some observations of simple analysis of Kolmogorov spectrum 
turbulence.  In particular, the question of why the number of DM actuators required to 
adequately compensate Kolmogorov turbulence is proportional to D/r0.   
 

Kolmogorov Turbulence Spectrum 

We can generate Kolmogorov spectrum turbulence screens based on the power spectral density 
(PSD), which is well approximated by, 
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where fs is the spatial frequency and r0 is the Fried coherence length, which is approximately the 
largest size of a telescope that is not significantly affected by atmospheric turbulence.1  The PSD and 
an example phase screen can be calculated in Matlab with the following code: 
 
%% spectral generation  
Dap = 30e-2; 
nxy = 256;  
r0 = Dap/2; 
dxy = Dap/nxy;  
df = 1/(2*nxy*dxy); 
x = (-nxy/2:1:nxy/2-1) * dxy; 
xf = (-nxy/2:1:nxy/2-1) .* df; 
[xx,yy]=meshgrid(xf,xf); 
rr = sqrt(xx.^2+yy.^2); 

  
%establish spectral density 
SD = (0.023/r0^(5/3)) .* (rr).^(-11/3); 
SD(nxy/2+1,nxy/2+1)=0; %remove piston 
nf; show(xf,xf,SD);  
xlabel('spatial frequency (1/m)'); ylabel('spatial frequency (1/m)'); 

  
%generate random screen 
rndScr = randn(nxy,nxy) + 1j .* randn(nxy,nxy); 
phs = real(ifft2(fftshift(sqrt(SD) .* rndScr)*nxy*nxy)); 
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phs = phs - mean(phs(:)); 
nf; show(x,x,(phs)); 
xlabel('(m)'); ylabel('(m)'); 

  
RMSphs = sqrt(mean(phs(:).^2)) 
RMS_notilt_ideal=sqrt(.134) * ((Dap/r0).^(5/6)) 
RMS_uncomp_ideal=sqrt(1.02) * ((Dap/r0).^(5/6)) 

  

The following figure shows the PSD calculated using this code. 

 
 
This figure shows the generated phase. 

 
This FFT technique is known to be poor at generating the low-order terms.  There are several 
techniques that are used to address this.  The simplest technique is to generate a phase screen over 
a much larger area and then clip out a smaller section.  The code above is not doing any low-order 
compensation, so the rms wavefront error is between the tilt-compensated result and the un-
compensated result predicted by theory.  The results reported by the code are: 

RMSphs = 0.8308 
RMS_notilt_ideal = 0.6522 
RMS_uncomp_ideal = 1.7995 

 
It is important to note that the spatial frequency spectrum does not vary based on Fried’s coherence 
length.   
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DM as a Spatial Frequency Spectral Filter 

To try to model the effect of a DM, we created a spatial filter and applied it to the spectral density 
before creating the phase screen.  This does not model any aspect of throw limitations in the DM, 
but is a reasonably accurate and quick methodology of studying the effect of adaptive optics on 
compensating Kolmogorov spectrum turbulence.  The filter was implemented as a 10th-order super-
Gaussian (where 2nd-order super-Gaussians are simple Gaussians).  The code for this was: 
%% DM as a spectral filter 
for ActuatorsPerAp = 1:1:10 
    t = sprintf('Actuators Per Aperture ~%.1f',ActuatorsPerAp); 
    dact = Dap/ActuatorsPerAp; 
    w = 1/(2*dact); 
    filter = 1 - exp(-1.0*(rr./w).^10); 
    nf; show(filter); 
    if (ppt) 
        ToPPT(gcf,t,[1 2 1],1); 
    end; 

     
    %generate random screen 
    phs = real(ifft2(fftshift(sqrt(SD) .* filter .* rndScr)*nxy*nxy)); 
    phs = phs - mean(phs(:)); 
    nf; show(x,x,(phs));  
    title(t); 
    xlabel('(m)'); ylabel('(m)'); 
    if (ppt) 
        ToPPT(gcf,t,[1 2 2],0); 
    end; 
end; 

  

The following figures show some of the aberrations filtered by the DM filter function.   

 
 
It is clear from these results that the DM filter was removing the low-order terms and the 
compensated residual is dominated by higher order terms.  In fact the compensated residual clearly 
has increasing spatial frequency content as the number of actuators per aperture increases.   
 
The next figure shows the rms wavefront error as a function of the number of actuators per 
aperture, which corresponds to the DM filter size in spatial frequency.   
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From this chart, we can see from this simulation that the residual wavefront error decreases as the 
number of actuators per aperture diameter.  The following figure shows the analysis of RMS 
wavefront error (residual after filtering with DM).    

 
In this figure we see that the λ/20 cross-over, which corresponds to approximately 90% Strehl ratio, 
happens when the number of actuators across the aperture equals the D/r0 ratio.  This relationship is 
what is typically used to initially design the number of actuators required for an AO system. 
 

Conclusion 

In this note, we showed that the spatial frequency term in the power spectrum of Kolmogorov 
spectrum turbulence was independent of the strength, which is represented by r0.  Then we showed 
that using a spatial frequency filter model of a deformable mirror, we could reduce the turbulence 
strength to around λ/20 when the number of actuators per aperture diameter was equal to the D/r0 
ratio.   
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