
 
In this application note we are documenting some of the properties of Zernike polynomials and 
describing in more detail how they are used in the AOS software.   
 

Zernike Decomposition Vector  

The real Zernike polynomials are defined as [D. Malacara, Optical Shop Testing],  

 
where, 

 
and n and l are the index parameters.  In this software, the Zernike polynomials (aka Zernikes) are 
ordered in increasing order of n then l.  The n index is effectively the radial power and l corresponds 
to the angular oscillation factor, which is valid from –n to +n in steps of 2.  The first few terms in the 
n-l order are commonly referred to as x-axis tilt (henceforth x-axis will be x), y tilt, 90-degree 
astigmatism, focus, 45-degree astigmatism, x trefoil, x coma, y coma, y trefoil, x quadrafoil, 2nd-order 
x astigmatism, spherical aberration, 2nd-order y astigmatism, y quadrafoil, and x pentafoil.  Since we 
are applying these polynomials to a Hartmann-type sensor, we are not using the first piston Zernike 
term. 
 

Ordering 

There are many different ways to order Zernike polynomials in the literature.  The most common is 
the Noll ordering, but Wyant and Malacara also show representations.  In general, these orderings 
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go increasing radial power order (the n index), but differ in the order of the l term (the angular term).  
Table 1 summarizes the n and l terms for the different ordering schemes for the first 25 Zernike 
terms.  From this ordering table, we can see some of the logic associated with the ordering.  AOS 
uses an ordering we call n,l ordering in which we are sorting in increasing order the n and then the 
l indices of the Zernikes.  Noll ordering sorts by increasing n then increasing l magnitude (absolute 
value) with positive l numbers before negative l numbers if n is even and negative l terms before 
positive l terms if n is odd.  Malacara’s ordering from his “Optical Shop Testing” book sorts by 
increasing n then decreasing l (or increasing m where m = (n-l)/2).       
 
 



Table 1: Summary of Zernike Ordering Techniques 

Index 
AOS - NL Ordering Noll Malacara Wyant 

n l m n l m n l m n l m 

1 1 -1 1 1 -1 1 1 1 0 1 -1 1 

2 1 1 0 1 1 0 1 -1 1 1 1 0 

3 2 -2 2 2 0 1 2 2 0 2 0 1 

4 2 0 1 2 2 0 2 0 1 2 -2 2 

5 2 2 0 2 -2 2 2 -2 2 2 2 0 

6 3 -3 3 3 1 1 3 3 0 3 -1 2 

7 3 -1 2 3 -1 2 3 1 1 3 1 1 

8 3 1 1 3 3 0 3 -1 2 4 0 2 

9 3 3 0 3 -3 3 3 -3 3 3 -3 3 

10 4 -4 4 4 0 2 4 4 0 3 3 0 

11 4 -2 3 4 -2 3 4 2 1 4 -2 3 

12 4 0 2 4 2 1 4 0 2 4 2 1 

13 4 2 1 4 -4 4 4 -2 3 5 -1 3 

14 4 4 0 4 4 0 4 -4 4 5 1 2 

15 5 -5 5 5 -1 3 5 5 0 6 0 3 

16 5 -3 4 5 1 2 5 3 1 4 -4 4 

17 5 -1 3 5 -3 4 5 1 2 4 4 0 

18 5 1 2 5 3 1 5 -1 3 5 -3 4 

19 5 3 1 5 -5 5 5 -3 4 5 3 1 

20 5 5 0 5 5 0 5 -5 5 6 -2 4 

21 6 -6 6 6 0 3 6 6 0 6 2 2 

22 6 -4 5 6 2 2 6 4 1 7 -1 4 

23 6 -2 4 6 -2 4 6 2 2 7 1 3 

24 6 0 3 6 4 1 6 0 3 8 0 4 

25 6 2 2 6 -4 5 6 -2 4 5 -5 5 
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Analysis of Peak-to-Valley and RMS in Zernike Polynomials 

Using the above formulation for Zernike polynomials (or the equivalent and easier to implement 
representation given in Hedser van Brug's SPIE paper "Efficient Cartesian representation of Zernike 
polynomials in computer memory"), we numerically studied the peak-to-valley (PV) amplitude and 
root-mean-squared (RMS) amplitude of the Zernikes over a unit radius circle using 1024 x 1024 grid 
of samples.  Figure 1 shows the results of this analysis.  The peak-to-valley amplitude is 2.0 for almost 
all the Zernikes with the exception of those with l=0 and n is a multiple of 4.  In those cases, the 
peak-to-valley amplitude is 2-0.5 or approximately 1.41.  The RMS amplitude has a general trend 
related to the radial index (n), but has anomalies when l=0 and n is a multiple of 2.   

  
Figure 1 – Peak-to-Valley and RMS Amplitude for the first 100 Zernike Polynomials 

Study of Anomalous Peak-to-Valley  

Zernike terms where l=0 and n is a multiple of 4 show anomalous peak-to-valley amplitudes.  These 
terms were analyzed numerically to see if there was indeed a simple discernable pattern in their 
peak-to-valley amplitude.  Each of these Zernike terms showed a maximum of 1.0, but a minimum 
that varied from exactly -0.5 to a value near -0.4. 
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We analyzed the values numerically to try to discern an obvious pattern, but could not find a simple 
pattern.  Suffice to say that the peak-to-valley amplitude of these Zernikes can be approximately 
reduced by a factor of 1/sqrt(2) and be accurate to within a few percent.   

Table 2 – Analysis of the l=0,n =4*index Zernike Terms Minima 

n Minimum 
Value 

Approximate 
Fraction 

Fraction 
Value 

Difference PV 
Difference 

from √2 

4 -0.5 -1/2 -0.5 0 0.085786 

8 -0.428571429 -3/7 -0.42857 4.44089E-16 0.014358 

12 -0.41475046 -90/217 -0.41475 3.9166E-06 0.000537 

16 -0.409690446 -93/227 -0.40969 -1.18368E-06 -0.00452 

20 -0.407276229 -347 / 852 -0.40728 -7.66205E-07 -0.00694 

24 -0.405936584 -41 / 101 -0.40594 -4.01046E-06 -0.00828 

 
PV to RMS Ratio Pattern 

Analysis of the ratio of peak-to-valley to RMS illustrated a simple mathematical relationship relative 
to the radial power term (n) given by 
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Figure 2 shows this relationship for the first 100 Zernike terms. 
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Figure 2 - Illustration of the simplification of the PV to RMS relationship with the n Zernike index. 

Amplitude Scaling for Overlap Integral Orthonormalization 

Zernikes are orthogonal about a unit circle, but their native overlap is not equal to one without 
proper scaling factors.  In our software we have implemented the scaling factor such that the 
Zernikes self-overlap is unity.  Using the polynomial definition described above, Malacara notes that 
the overlap of all Zernikes can be given by, 

 

In the software, the overlapping Zernike is scaled by
 


12 n
.  The vector will report the results of 

the decomposition with the traditional overlap integral normalization.  The only exception we found 
to this was for the terms where n is a multiple of 4 and l is zero, in which case the normalization 

factor needs to be reduced by a factor of 
2

1
.  Below is a table of the first few Zernikes and their 

associated numerical normalization factors.   
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Index n l Name Normalization 
Factor 

1 1 -1 X Tilt 2 

2 1 1 Y Tilt 2 

3 2 -2 90-degree Astigmatism 2.4495 

4 2 0 Focus 1.7321 

5 2 2 45-degree Astigmatism 2.4495 

6 3 -3 X Trefoil 2.8284 

7 3 -1 X Coma 2.8284 

8 3 1 Y Coma 2.8284 

9 3 3 Y Trefoil 2.8284 

10 4 -4 X Quadrafoil 3.1623 

11 4 -2 X 2nd-order 
Astigmatism 

3.1623 

12 4 0 Spherical Aberration 2.2361 

13 4 2 Y 2nd-order 
Astigmatism 

3.1623 

14 4 4 Y Quadrafoil 3.1623 

15 5 -5 X Pentafoil 3.4641 

 
Peak-to-Valley Zernike Normalization 

The raw Zernike polynomials are scaled with the following code to create a near unity peak to valley: 
    x=0.5; 
    if (mod(n,4)==0 && l==0) x=1/sqrt(2); end; 
    if (n==4 && l==0) x=1/1.5; end; 
    if (n==8 && l==0) x=1/(1+3/7); end; 

 

Overlap-Normalized Scaling 

The raw Zernike polynomials are scaled with the following code to create a near unity overlap 
integral: 
    x=sqrt(2.0*(n+1.0)/pi); 
    if (mod(n,2)==0 && l==0); x=x./sqrt(2); end; 

Overlap Integral Calculation for Zernike Decomposition 

To start calculating the overlap integral (aka dot product) we multiplied each sample by its 
corresponding point in the overlap-normalized Zernike term over the unit-radius circle and then 
divided by the number of points.  The code for this in Matlab can be implemented as “coef(ii) = 
sum(sum(zideal.*ztest)) ./ cnt;”.  This methodology does not take into account the area 
factor, so when we evaluated the self-overlap integral between the overlap normalized Zernike 
polynomials over the first 100 Zernikes and found that the result was 1/π.  To complete the overlap 
integral, we need to multiply by the area of the unit circle, which is π, and leaves unity. 
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Comparison of RMS to Overlap-Normalized Overlap Integral  

We performed the overlap integral on a Zernike term that had been scaled to have a peak-to-valley 
amplitude of 1 micron with its corresponding overlap-normalized Zernike term without multiplying 
by the area (π).  Figure 3 shows the results from this analysis.  The resulting overlap coefficient was 
found to be equal to the RMS wavefront of the test Zernike divided by √π within the numerical noise.  
If the proper area factor is used, the RMS Zernike amplitude would be the overlap integral divided by 
√π instead of times √π.   

 
Figure 3 - Results of Overlap Integral between 1-micron PV amplitude Zernike and the Overlap-
Normalized Zernike Term 
 

Conclusions 

Zernike polynomials are widely used in optics, but have different orderings and different amplitude 
scale factors.  The AOS software uses the Zernike terms ordered by increasing n then increasing l (NL 
ordering).  The software reports the overlap-normalized (orthonormalized) coefficients as the 
Zernike polynomial decomposition.  The RMS amplitude of each Zernike from the decomposition is 
equal to the overlap integral coefficient times √π.    
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