
© Active Optical Systems, LLC 

 

In this application note, we describe how an 
adaptive optics control matrix can be 
generated for an adaptive optics system 
comprising a deformable mirror and a 
Hartmann wavefront sensor.  There are many 
different variations on how to create a control 
matrix, but we will focus on what we believe 
to be the simplest version.   

In a typical AOS adaptive optics system, an 
aberrated beam of light reflects from a 
deformable mirror and illuminates a 
Hartmann wavefront sensor.  Figure 1 
illustrates this typical setup.  The wavefront 
sensor measures the average gradient (aka 

slope) of the wavefront over each sub-
aperture in an array of sub-apertures to 
produce a vector of wavefront slope 
measurements.  There are two common 
conventions for the ordering of the x and y 
slopes: xxyy and xyxy.  We use the xyxy 
convention at AOS.   

To complete an adaptive optics system with 
this optical setup, we need to convert the 
wavefront slope measurements into 
commands to the deformable mirror.  In the 
AOS software, this is accomplished with either 
metric AO searching or through a control 
matrix.  We will only discuss the control matrix 
approach in this application note.  When the 
vector of measured slopes is multiplied by the 
control matrix it produces a vector of 
commands that if applied to the DM (in 
addition to any commands that currently exist 
on the DM) will produce the minimum RMS 
wavefront slopes.   

Making a Poke Matrix 

In the AOS software, the adaptive optics 
control matrix is generated by creating a 
pseudo-inverse of a measured poke matrix.  
The poke matrix is a matrix that measures the 
response of each actuator on the HWFS.  In 
the AOS software, the poke matrix is 
generated by actuating each actuator or 
group of actuators individually, measuring the 

 

 

 

AN012 

 

Control Matrices Generation for  

Hartmann Wavefront Sensor Adaptive Optics 

 

 

 

 

Author:  Justin D. Mansell, Ph.D. 

 Active Optical Systems, LLC 

Revision: 11/29/09 

 

Figure 1 - Typical AOS Adaptive Optics 
System Optical Setup 



AN012: AO Control Matrices 

© Active Optical Systems, LLC 2 

wavefront slopes, and assembling the vector 
of slope measurements into a matrix.  This 
matrix describes the relationship between 
commands to the deformable mirror and 
response of the wavefront sensor.  
Mathematically, this can be written as 

cP   

where   is the vector of wavefront slopes, P 

is the poke matrix, and c is the vector of DM 
commands.  It is important to note that the 
DM commands are not voltages, but instead 
should be thought of as forces since many 
different DMs (e.g. membrane deformable 
mirrors) have a parabolic response to voltage.  
This poke matrix can saved as a comma-
separated value (CSV) file from the AOS 
software.   

The best poke matrix only contains the effect 
of the actuator motion.  It is usually good to 
create a new reference to eliminate the 
system static aberrations and isolate the DM 
influence functions (aka pokes).  To isolate the 
actuator motion from the other system 
aberrations, the AOS software has an option 
to poke up (positive command) and down 
(negative command) and record the 
difference between these measurements into 
the poke matrix.  To avoid any static image 
noise, the AOS software also has the ability to 
subtract a background image from each 
frame. 

There is another option that enables the user 
to remove the slope vector averaged over all 
the pokes to remove the background 
aberration.  The average slope removal is 
controversial because it results in a very low-
gain SVD mode and, as such, a very high 
condition number, which is the ratio of the 
highest SVD gain to the lowest SVD gain (see 
Matlab’s cond() function).  This low gain mode 
can be removed from the control matrix using 
the SVD techniques described later. 

Actuator Efficacy & Slaving 

One simple technique to quantify the efficacy 
of each actuator on the AO system is to 
examine the peak-to-valley (max minus min) 
slope vector for each actuator poke.  This 
value should be large relative to the noise 
floor of the wavefront sensor for each of the 
actuators.  If the value is close or comparable 
to the noise floor, the actuator should be 
removed from control if it is poorly 
illuminated or slaved to (set to the same value 
as) an adjacent well-observed actuator.  This 
can be done in the AOS software by 
deactivating an actuator or grouping it to its 
neighbor in the DM Controller. 

Noise Rejection through Simulation 

To achieve better results, the poke matrix can 
be processed to remove noise from the 
matrix.  The poke matrix can be analyzed to 
help determine the mapping of the 
deformable mirror actuators to the sub-
apertures.  Then modeling of the DM can be 
used to create a poke matrix without any 
noise from the measurement.  The AOS 
software supports this, by enabling saving of 
the poke matrix and loading of a new control 
matrix.  These techniques are advanced and 
will not be discussed further here. 

Making a Control Matrix from a Poke Matrix 

Once a good poke matrix has been 
established, this poke matrix needs to be 
inverted to create a control matrix that relates 
the measured wavefront slopes to DM 
commands.  Mathematically this can be 
represented as 

 






 Prsepseudoinvec
 

where   is the control matrix.  Since the poke 
matrix is not square (it is 2 times the number 
of sub-apertures by the number of actuators), 



AN012: AO Control Matrices 

© Active Optical Systems, LLC 3 

it cannot be inverted classically, but instead 
requires a different mathematical technique.   

The AOS software uses singular value 
decomposition (SVD) to create a pseudo-
inverse.  In SVD1, the poke matrix is 
decomposed into the product of three 
matrices U, S, and V.  U is a set of orthonormal 
output basis vectors that are found by finding 

the eigenvectors of *PP   where the * 
operator is the transpose.  V is a set of 
orthonormal input basis vectors that are 

found by finding the eigenvectors of PP * .  S 
is a diagonal matrix of singular values that are 
found as the square root of the eigenvalues of 
the eigenvectors in U and V.   

The SVD decomposition can be used to 
calculate a pseudo-inverse of the poke matrix, 
P, as  

*USVP    

where the + operator is the pseudo-inverse.  
The pseudo-inverse of S is found by taking the 
reciprocal of each diagonal element of the S 
matrix.   

The condition number of a matrix (found from 
the Matlab command cond()) is the ratio of 
the highest gain to the lowest gain.  If a matrix 
is formed of orthogonal vectors, then the 
condition number will be 1.  Since in most 
deformable mirrors the influence functions 
are not orthogonal, it is expected that the 
condition number will not be unity, but lower 
values are generally better.  Unfortunately, 
the number cannot typically help diagnose the 
source of a problem, so a more detailed 
examination is required.   

It is common to examine the magnitudes of 
the gains from the SVD calculation to 
determine the quality of the poke matrix and 
help identify any problems.  If there is one 
mode that is much higher gain than the 
others, it usually indicates the presence of a 

static aberration in the measurements.  If the 
gains span more than about 2 orders of 
magnitude, then the matrix may be poorly 
conditioned for adaptive optics.  Examination 
of a system with a large range of SVD gains 
usually shows influence functions with limited 
orthogonality, multiple actuation of a single 
actuator, or too many poorly observed 
actuators. 

SVD Mode Removal 

There are many different variations on 
creating a control matrix, but one that is 
commonly used is the removal of SVD modes 
from the control matrix.  This is accomplished 
by setting the gain corresponding to the SVD 
mode being removed to zero in the S matrix 
before calculating the pseudo-inverse.  
Removing modes from the control matrix is 
not the same as removing actuators from the 
control matrix.  We only recommend 
removing one or two modes from the control 
matrix.  If it is necessary to remove more than 
that to make the system operate well, it is 
likely that there are poorly observed actuators 
that should be removed from control or 
slaved (aka grouped) to their neighbors.   

Evaluating the Control Matrix with Poke-Control 

Product 

After the generation of the control matrix, one 
way of evaluating the quality of the control 
matrix is to multiply it by the poke matrix and 
compare it with an identity matrix.  A single 
number metric is the RMS of the difference 
between the poke-control product and the 
identity matrix, which would ideally be zero.  If 
it is significantly non-zero then the control 
matrix may be poorly conditioned for adaptive 
optics.   

Using a Control Matrix in Integrator Control 

After we have established a control matrix, 
the AOS software is setup for integrator 
control of the wavefront.  The commands for 



AN012: AO Control Matrices 

© Active Optical Systems, LLC 4 

the DM are calculated in each step of the AO 
loop by taking the commands from the last 
loop and adding the measured slopes times 
the control matrix times the AO system gain, 
or 

     gaintctc 1 . 

There are other methods of implementing AO 
systems using control matrices, but this is one 
of the most commonly used and has proven 
to be very effective. 

Example: Analysis of a Measured 

Poke Matrix 

To better illustrate the topics discussed here, 
we have put together a Matlab script to 
analyze a measured poke matrix.  The code 
for this is shown in the Appendix.  Some of the 
dependent functions are not included, but 
they can be commented out to make the 
script run. 

The first thing that the script does is to load 
the data saved from the AOS software.  The 
functions to do this come with the current 
version (1.8) of the AOS software.  This is a 
poke matrix that was measured for a 32 
actuator square grid membrane DM (layout 
shown in Figure 2).  

 

Figure 2 - Layout and actuator numbering of 
the 32-channel square-grid MDM 

Figure 3 shows the poke matrix that was 
loaded from the file. 

 

Figure 3 - Measured Poke Matrix 

The condition number was 27 indicating a 
fairly good poke matrix, but analysis of the 
SVD gains, shown in Figure 4, showed an area 
of potential improvement.  The highest gain 
was significantly higher than the next highest 
gain, indicating a problem with a background 
static aberration in the system.   

 

Figure 4 - SVD Gains from Measured Poke 
Matrix 

 

We averaged all the measured slopes in the 
poke matrix together to show the background 
pattern.  Figure 5 shows the average slopes in 
the x and y directions.   



AN012: AO Control Matrices 

© Active Optical Systems, LLC 5 

 

Figure 5 - Average Slopes from Poke Matrix 

A significant portion of the 6.9 mradian poke 
range was this background pattern alone, so 
we subtracted this average poke from the 
poke matrix and created a much cleaner poke 
matrix, shown in Figure 6.  The horizontal 
streaks that were in the measured poke 
matrix have been removed and the pattern is 
much clearer.   

 

 

 

Figure 6 - Poke Matrix with the Average 
Slope Removed 

Unfortunately, the condition number is much 
higher (3.3e15).  Figure 7 shows a section of 
the SVD gains of the new average-subtracted 
matrix.  Examination of the SVD gains showed 
that all the range was coming from the last 
mode.  If it were not considered, the ratio of 
low to high gains was only 15.5.   

 

Figure 7 - SVD Gains After Average 
Subtraction 

Poke Amplitude Analysis 

After removing the static aberration from the 
background, we examined the amplitude of 
the measurement of the influence function 
(poke) by subtracting the maximum slope 
from the minimum slope for each actuator to 
evaluate the efficacy of each actuator.  Figure 
8 shows the peak-to-valley poke amplitude for 
each influence function.  This plot shows that 
some of the actuators do not have as strong 
an influence on the wavefront sensor as 
others, but there are not any that are so low 
as to warrant removal from the matrix or 
slaving since they are all significantly above 
the wavefront sensor noise floor. 

 

Figure 8 - Peak to Valley Slopes for Each 
Influence Function 

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7
x 10

-3

P
V

 S
lo

p
e
s

IF



AN012: AO Control Matrices 

© Active Optical Systems, LLC 6 

SVD Mode & Control Matrix Analysis 

We continued the analysis of the SVD terms 
by plotting the orthonormal modes in DM 
(input) and wavefront-sensor (output) space, 
shown in Figure 9 and Figure 10 respectively.  
Modes in these plots are ordered from 
highest to lowest gain.  To provide a more 
direct comparison, the modes in the 
wavefront sensor space were reconstructed 
into phase.  As is expected in this type of 
system, the lowest spatial frequency modes 
have the highest gain.   

Outside of the script we multiplied the poke 
and control matrices after removing one SVD 
mode and found that the RMS of the 
difference between the identity matrix and 
the poke-control matrix product was 3e-16.  
When we created a control matrix with 10 
modes removed, the RMS increased to 9.4%.   
  



AN012: AO Control Matrices 

© Active Optical Systems, LLC 7 

 

Figure 9 - SVD Modes in DM Space 

 

Figure 10 - SVD Modes in the HWFS space 

Conclusions 

In this application note we have shown how 
we create a control matrix from a poke matrix 
using singular value decomposition (SVD).  We 
also interpreted the results of the SVD and 
showed how it can be used to create better 
control matrices. 

 



© Active Optical Systems, LLC 

Appendix: Matlab Poke Matrix Analysis Code 

% this script analyzes the poke and control matrices 
setup; 
showIFs=1; 
ppt=1; 

  
%load the data 
poke=csvread('CM_poke.csv'); 
Nact = min(size(poke)); 
Nsub = max(size(poke))/2; 
[wfs,aois]=LoadWFS('refFlat.wfs'); 
vec = [2:5 7:30 32:35];  
%[wfs,aois]=LoadWFS('refDMcenter.wfs'); 

  
%show the poke matrix 
nf; imagesc(poke); 
title(sprintf('Input Poke Matrix - Cond=%f',cond(poke))); 
if (ppt) ToPPT(); end; 

  
[pinv,gains]=svdinverse(poke); 
nf; semilogy(gains);  
title('Input Poke Matrix SVD Gains'); 
if (ppt) ToPPT(); end; 
%condition number (cond) is the ratio of highest to lowest SVD gains 
%values near 1 are a well conditioned matrix 

  
%% subtract the average slopes from the poke matrix 
pokeOrig = poke; 
pokeavg = mean(poke')'; 
for ii=1:Nact; 
    poke(:,ii) = poke(:,ii)-pokeavg; 
end; 

  
%show the average pokes 
nf;  
for ii=1:length(aois); 
    xi = aois(ii).xindex+1; 
    yi = aois(ii).yindex+1; 
    dx(xi,yi) = pokeavg(2*ii-1); 
    dy(xi,yi) = pokeavg(2*ii); 
end; 
subplot(1,2,1); show(dx); title('dx poke average'); 
subplot(1,2,2); show(dy); title('dy poke average'); 
if (ppt) ToPPT('Average Poke Wavefront Slopes'); end; 

  
%show the new poke matrix 
nf; imagesc(poke); 
title(sprintf('Poke Matrix Average Subtracted - Cond=%f',cond(poke))); 
if (ppt) ToPPT(); end; 

  
[pinv,gains]=svdinverse(poke); 
nf; semilogy(gains);  
title('Poke Matrix Average Subtracted SVD Gains'); 
if (ppt) ToPPT(); end; 

  
%% show the IFs in slope space 
if (showIFs) 
    cmin=min(poke(:)); cmax=max(poke(:)); 
    for ii=1:Nact; 
        for jj=1:Nsub; 
            xi = aois(jj).xindex + 1; 
            yi = aois(jj).yindex + 1; 
            dx(xi,yi)=poke(2*jj-1,ii); 
            dy(xi,yi)=poke(2*jj,ii); 
        end; 
%         clf; 



AN012: AO Control Matrices 

© Active Optical Systems, LLC 9 

%         subplot(1,2,1); show(dx); caxis([cmin cmax]); colorbar; 
%         title('x slopes'); 
%         subplot(1,2,2); show(dy); caxis([cmin cmax]); colorbar; 
%         title(sprintf('y slopes: %i',ii)); 
%         drawnow; pause(0.1); 
        clf; 
        show([dx dy]); caxis([cmin cmax]); colorbar; 
        title('Wavefront Slopes'); 
        text(1,             1.5,  'X Slopes'); 
        text(size(dx,1)+1,  1.5,  'Y Slopes'); 
        drawnow; pause(0.1); 
        if (ppt) ToPPT(gcf,'IFs',[6 6 vec(ii)],ii==1); end; 
    end; 
end; 

  
%plot peak to valley slopes 
nf; plot(max(poke)-min(poke),'r*-'); 
ylabel('PV Slopes'); 
xlabel('IF'); 

  
%% invert the poke matrix and show the control matrix & svd gains 
modesRemoved=1; 
[ctrl,gains,modes]=svdinverse(poke,modesRemoved); 
nf; imagesc(ctrl); title('Control'); 
nf; semilogy(gains,'r*-'); title('SVD Gains'); 

  
%% show the SVD modes in DM space 
rmax = ceil(sqrt(Nact)); 
cmax = rmax; 
dm = LoadDM('MDM1-32S-001.dm'); 
for ii=1:Nact; 
    %v=modes(ii,:); %find the DM modes - WRONG ORIENTATION 
    v=modes(:,ii); %find the DM modes 
    clf; 
    ShowDM(dm,v,[true],true); 
    axis image; 
    axis off;  
    zoomOut(0.05); 
    drawnow; pause(1.0); 
    if (ppt) 
        ToPPT(gcf,'SVD Modes',[rmax cmax vec(ii)],ii==1); 
    end; 
end; 

  
%% show the SVD modes in WFS space 
rmax = ceil(sqrt(Nact)); 
cmax = rmax; 
for ii=1:Nact; 
    %v=modes(ii,:); %find the DM modes - WRONG ORIENTATION 
    v=modes(:,ii); %find the DM modes 
    v2 = poke*v(:); %convert the modes to WFS space 
    for jj=1:Nsub; 
        xi = aois(jj).xindex + 1; 
        yi = aois(jj).yindex + 1; 
        dx(xi,yi)=v2(2*jj-1); 
        dy(xi,yi)=v2(2*jj); 
    end; 
    intensity = (dx~=0); 
    z = Southwell2(intensity,dx,dy,1,1); 
    clf; 
    subplot(1,2,1); show(dx); 
    title('x slopes'); 
    subplot(1,2,2); show(dy); 
    title(sprintf('y slopes: %i',ii)); 
    drawnow; pause(0.1); 
    if (ppt) 
        ToPPT(gcf,'SVD Modes',[rmax cmax vec(ii)],ii==1); 
    end; 
end; 

  



AN012: AO Control Matrices 

© Active Optical Systems, LLC 10 

%% show the SVD modes in WFS space 
rmax = ceil(sqrt(Nact)); 
cmax = rmax; 
for ii=1:Nact; 
    %v=modes(ii,:); %find the DM modes - WRONG ORIENTATION 
    v=modes(:,ii); %find the DM modes 
    v2 = poke*v(:); %convert the modes to WFS space 
    for jj=1:Nsub; 
        xi = aois(jj).xindex + 1; 
        yi = aois(jj).yindex + 1; 
        dx(xi,yi)=v2(2*jj-1); 
        dy(xi,yi)=v2(2*jj); 
    end; 
    intensity = (dx~=0); 
    z = Southwell2(intensity,dx,dy,1,1); 
    clf; 
    show(z); colormap(gray); 
    title(sprintf('Mode: %i',ii)); 
    drawnow; pause(0.1); 
    if (ppt) 
        ToPPT(gcf,'SVD Modes',[rmax cmax vec(ii)],ii==1); 
    end; 
end; 

  

  
% function [Minv,gains,modes]=svdinverse(M,varargin) 
% %function [Minv,gains,modes]=svdinverse(M,[modesRemoved]) 
% % does the SVD inverse of a matrix with mode removal 
% % Example: 
% % [D,gain,modes]=svdinverse(M,1); 
% % for ii=1:size(modes,2); 
% %     modePhs{ii} = reshape(M * modes(:,ii),ny,nx); 
% %     nf; show(modePhs{ii}); title(ii); pause(0.01); 
% % end; 
% if (nargin==2) 
%     modesRemoved=varargin{1}; 
% else 
%     modesRemoved=0; 
% end; 
%  
% [u,ss,v]=svd(M); 
% sv=diag(ss); gains=sv; 
% svi = 1.0./sv; 
% si = zeros(size(ss,2),size(ss,1));  
% %nf; semilogy(sv,'*b-'); title('svd gains-AOA recon'); 
% for ii=1:size(svi,1)-modesRemoved; 
%     si(ii,ii) = svi(ii);  
% end; 
% Minv=v*si*u'; 
% if (nargout>=3) 
%     %calculate the mode shapes 
%     modes = v; 
% end; 
% return; 

 

References 

                                                      
1
 http://en.wikipedia.org/wiki/Singular_value_decomposition 

 

http://en.wikipedia.org/wiki/Singular_value_decomposition

