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In this application note, we show an example of how to work with our .WFS files in Matlab. This
example was analysis of a set of .WFS files from the measurement of a 1 meter focal length lens on a
1550nm Shack-Hartmann Wavefront Sensor. Through this analysis we confirmed that the slopes
being measured were not correct due to an improperly set threshold in the centroid operation. We
also verified the wavefront curvature fitting section of the AOS Adaptive Optics code. This
Application Note was written to eliminate any dependencies except the scripts that come with the
latest versions of the AOS Adaptive Optics software. You may need to add the directory containing
the Matlab scripts to your Matlab path in order to run this code. The entire script is in the appendix
of this application note.

Reading and Displaying a .WFS File
The first section of this script loads and displays the data recorded by the AOS 1550nm Shack-

Hartmann wavefront sensor. The code for this section is:
% This script is an example of analysis of some 1550nm WFS data taken while

% measuring a 1m focal length lens. It does some basic processing and
% analysis on an AOS _WFS file
close all; clear all; clc; format compact;

f=1.0; %we took this data measuring a 1m focal length lens
fb="1000mm" ;

% read in the WFS data
[wfs,aois]=LoadWFS(sprintf("%s.wfs",fb));
pixelSize=wfs.pixSizeX; %this camera has square pixels
efl = wfs.separation;

figure; showWFS(aois); axis image; colorbar;

% convert the slope data from a vector into a 2D grid using the index
% parameters
for ii=1:length(aois);

dxl(aois(ii).xindex+1l,aois(ii).yindex+1) = aois(ii).dx;
dyl(aois(ii).xindex+1l,aois(ii).yindex+1) = aois(ii).dy;
end;
figure;

subplot(1,2,1); imagesc(dxl); axis image; colorbar;
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title("X Slopes”®);
subplot(1,2,2); imagesc(dyl); axis image; colorbar;
title("Y Slopes®);

The LoadWFS function reads from the .WFS file information about the wavefront sensor and the
areas of interest or AOIs that define the section of the camera behind each of the Hartmann sub-
apertures. The wfs structure in this file as read into Matlab contains the following fields:
wfs =
separation: 0.0051
threshold: 0.0000
pixSizeX: 2.5000e-005
pixSizeY: 2.5000e-005
dxsub: 1.4992e-004
dysub: 1.4959e-004
Unless otherwise specified, all units in these files are in meters-kilograms-seconds (mks). Separation
is the distance from the Hartmann array to the camera. Threshold is the global relative threshold on
a 0 to 1 scale. pixSizeX and pixSizeY are the pixel dimensions of the camera. dxsub and dysub are
the average sub-aperture spacings in the two axes calculated from the AOI data.

The aoi data is a vector of structures containing information about the AOIs and measurements
made in the AOIs. The first AOI structure contains the following information:

>> aois(l)
ans =
x1: 4
x2: 10
yl: 2
y2: 8
Xr: 6.5877
yr: 4.5304
xindex: O
yindex: O
Xc: 7.1723
yc: 4.9363
dx: 0.0029
dy: 0.0020
1: 3.5929
p: O

x1, x2, y1, and y2 are the coordinates of the AOI boundaries in pixels. xr and yr are the reference
spot positions. xindex and yindex are the zero-based indices for mapping to two-dimensions. xc and
yc are the measured centroid locations. dx and dy are the measured wavefront slopes. | is the sum
of the normalized pixel intensities above threshold. p is the wavefront phase.

This section of code loads the file “1000mm.wfs” and displays the slopes as a quiver plot, the phase
as a false-color image, and the slopes as false-color images. The resulting graphs are as follows:
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Figure 1 - Results read in from the .WFS file

Calculating Slopes based on Theory
We chose a lens for this analysis because it was easy to obtain and easy to calculate the correct
solution base on theory. A collimated beam passing through an ideal lens will have a wavefront

phase, ¢, given by,
2

r
¢ = TR

where r is the lateral radius and f is the lens focal length. The wavefront slopes in the x and y
directions are then given by,

o X and o = l.

ox f oy f
We apply these formulas in the next section of code to calculate the ideal slopes using the lateral
dimensions given by the xr and yr fields in the aois structure. The following code calculates the

slopes for a 1-m lens based on theory:

%% calculate the slopes based on theory

aois2=aois;

Xc = 147; % determined imperically

yc = 135; % determined imperically

for ii=1:length(aois);
aois2(ii).dx = -(aois(ii).xr-xc).*pixelSize./T;
aois2(ii).dy = -(aois(ii).yr-yc).*pixelSize./T;
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r = sqrt((aois(ii).xr-xc).”2 + (aois(ii).yr-yc).”2).*pixelSize;
aois2(ii).p = r."2 ./ (2*F);
end;

% show the theory-calcualted WFS data
figure; showWFS(aois2);

% convert the theory calculated WFS data into a 2D array

for ii=1:length(aois);
dx2(aois2(ii).xindex+1,a0is2(i
dy2(aois2(ii).xindex+1,ao0is2(i

end;

st = PV(dx2) ./ PV(dx1)

i).yindex+1)
i).yindex+1)

aois2(ii).dx;
aois2(ii).dy;

figure;

subplot(1,2,1); imagesc(dx2); axis image; colorbar;
title("Calculated X Slopes®);

subplot(1,2,2); imagesc(dy2); axis image; colorbar;
title("Calculated Y Slopes™);

This section of code produces the following plots of the theoretical answers. When comparing the
magnitude of the slopes, it is clear that there is a difference in magnitude from the measurements.
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Figure 2 - Results from theory
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Comparing Measured and Theoretical Phase
The next section of code compares the measured and ideal reconstructed phase.

%% now look at the measured phase
%convert the phase into a 2D array
for ii=1:length(aois);

zl(aois(ii).xindex+1,aois(ii).yindex+1l) = aois(ii).p;
z2(aois2(ii).xindex+1l,ao0is2(ii).yindex+1l) = aois2(ii).p;
I(aois2(ii).xindex+1l,aois2(ii).yindex+1l) = aois2(ii).l;
end;
figure;

subplot(1,3,1); imagesc(zl); axis image; colorbar; title("Lab Measured®);
subplot(l1,3,2); imagesc(z2); axis image; colorbar; title("Theory
Calcualted™);

dz = z1-z2; dz=dz-mean(dz(:)); dz=dz.*(1>0); %remove the mean and zero the
low intensities

subplot(1,3,3); imagesc(dz); axis image; colorbar; title("Lab - Theory");

The results from this section are shown below. The theoretical phase is larger than the lab
measurement by a factor of about 8.5 um to 14 um or about 1.6x.
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Figure 3 - Comparison of the measured and theoretical wavefront phase.

Analysis of the Ratio of Spot Motion in Pixels to Measured Slopes
The next code was written to analyze the ratio between the centroid motion in pixels and the

calculated slopes.
%% analyze scale factors
%look at the ratio of the centroid shift to the reported slopes to make
%sure the paramters are correct
ratioExpected = efl/pixelSize
c=1;
for ii=1:length(aois);
it (aois(ii).1>0)

deltaxpix(ii) = aois(ii).xc-aois(ii).xr;
deltaypix(ii) = aois(ii).yc-aois(ii).yr;
slopex(ii) = aois(ii).dx;
slopey(ii) = aois(ii).dy;
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ratiox(c) = deltaxpix(ii)./slopex(ii);
ratioy(c) = deltaypix(ii)./slopey(ii);
c=c+1;
end;
end;

AverageRatios=[mean(ratiox) mean(ratioy)]

The results from the Matlab command window are shown here:

ratioExpected =
204
AverageRatios =
204.0000 204.0000

This result shows that the problem was not associated with any problem with improperly set
Hartmann array to camera separation or pixel size.

Examination of the Image Overlaid with AOI Information
In this next section of code we load the Hartmann sensor image and overlay the AQOIs in red,
centroids as green asterisks, and original reference spot positions as yellow circles.

%% look at the image & overlay AOls
%make the measured centroids green stars and
% the reference locations yellow circles
img=imread(sprintf("%s.tif",fb));
img=double(img(:,:,1));
figure; imagesc(img); colormap(gray); axis image; colorbar;
for ii=1:length(aois)
hold on;
xl=aois(ii)-x1;
x2=aois(ii).x2;
yl=aois(ii).yl;
y2=aois(ii).y2;
plot([x1 x2 x2 x1 x1]+1,[yl y1 y2 y2 y1]+1,"r-");
plot(aois(ii).xc+l,aois(ii).yc+l,"g*");
plot(aois(ii).xr+l,aois(ii).yr+1,"yo");
end;
slopeMax = (sqrt(size(img,l)."2+size(img,2)-"2)*pixelSize/2) / T
PV_WF = ((sgrt(size(img,l).”2+size(img,2).-"2)*pixelSize)."2/4) / (2*T)

The upper left section of the image is shown below. Examination of the image showed some
unusual pixel gains (see x=32, y=24), but a generally good trend of spot motion away from the center
of the image. The pixel values that are clearly not part of the focal spots are reporting fairly high
maghnitudes. There are some that are showing ~40 counts out of 255 in this image. When there is
this high of a background in an image, we usually see a trend of spot centroids being closer to the
center of the AQlIs, thus resulting in a lower slope. We confirmed this by going back to the AOS
software and reanalyzing the data with a larger global threshold (10%). This analysis produced
results that were much closer to the known lens focal length of 1.0 meters.
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The last two lines of this code calculate the ideal max slope magnitude and max wavefront phase
amplitude (aka sagittus) if the beam were perfectly centered on the wavefront sensor. (Note thatin
the previous theoretical calculations, we found the slopes in the two axes, but not the maximum
radial slope magnitude.) The theoretical peak-to-valley center wavefront amplutide of 13.1 umis
much closer to the ~14 um generated before. The difference is due to the center of the wavefront
not being centered on the camera. The Matlab command window results are shown here:

slopeMax =
0.0051
PV_WF =
1.3120e-005

Fitting the Slope to a Plane and Extracting Wavefront Curvature
Even though this data was now known to be faulty due to the low threshold on the centroiding, we
can still use it to verify the AOS software’s wavefront radius of curvature determination algorithm.
To do this we fit the slopes in the two axes with a plane and then calculated the curvature in each
axis as the inverse of the linear slope coefficient or
%: x:mx+b—>ROC:l
ox ROC m
The following code was used for the fitting.

%% Fit the slopes to a plane

%since the input wavefront is primarily curvature, we can fit the
%wavefront slopes with a plane to determine the curvature

c=1;
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for ii=1:length(aois)
iT (aois(ii).1>0)
Mx(c, :)=[aois(ii

C c*pixelSize 1];
My(c, :)=[aois(ii

).

)-

).x

)- y *pixelSize 1];
dxv(c)=aois(i ax;
dyv(c)=aois(ii).dy;

c=c+1;
end;

end;
Mxinv=pinv(Mx) ;
Myinv=pinv(My);
xcoef = Mxinv * dxv(:)
ycoef = Myinv * dyv(:)
EstimatedROCs = 1./[xcoef(1l) ycoef(1)]

* %

% the slope fits

aois3=aois;

for i1i=1:length(aois)
aois3(ii).dx = xcoef(1l).*aois(ii).xc.*pixelSize + xcoef(2);
aois3(ii).dy = ycoef(1).*aois(ii).yc.*pixelSize + ycoef(2);
% convert to 2D

dx3(aois3(ii).xindex+1l,ao0is3(ii).yindex+1l) = aois3(ii).dx;
dy3(aois3(ii).xindex+1l,ao0is3(ii).yindex+1l) = aois3(ii).dy;
end;
figure;

subplot(1,2,1); imagesc(dx3); axis image; colorbar; title("Fit Slopes X");
subplot(1,2,2); imagesc(dy3); axis image; colorbar; title("Fit Slopes Y");

% show the difference between the measured and fit slopes

figure;

subplot(1,2,1); imagesc(dx3-dx1l); axis image; colorbar; title("Fit Slopes -
Measured Slopes X");

subplot(1,2,2); imagesc(dy3-dyl); axis image; colorbar; title("Fit Slopes -
Measured Slopes YT);

The results from this section of the script are shown below with a screen-shot from the AOS
software showing that the curvature estimated by the AOS software and determined from the fits to
the wavefront slope data in Matlab are the same.

xcoef = W& 108 Adaptive Optics - Default [=1E3)
_O i 6087 File  ‘Waorkspace  ‘Windows — Help
0-0023 ’ Single Acquire ] [ Continuous Acquire ]
ycoef - ’ Create Reference ] [ Analyze Image ] [ Hide ]
~0-5825 (CLLTT LTI TIITTTTTITTTTTILIT] | Intensity
0-0021 Setup | Reference | Camera i &n | Amalysis Setup
EstimatedROCs =

Facii[-1.64e+0, -1.72e+0)
-1.6427 -1.7167 Minimum Slopes:[-3 46e-3, -2.05e-3]
Masimum Slopes:[3.71e-3, 2.79e-3)
Average Slopes:[-1.73e-4, 2. 4e-4)
FAMS Slopes(1.4e-3, 1.11e-3]

t aximum WF [m)E.25e-6

tinimurn 'WF [m]:-2.56e-6

RS WF [m):1.68e-E
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Conclusions

This analysis in Matlab eventually showed us that we had a problem identifying the spot positions in
the lab due to an improperly set threshold. It verified that the AOS software was calculating the
wavefront curvature based on a fit to the measured wavefront slope data. Most importantly, this
application note illustrates how AOS .WFS files can be worked with in Matlab.
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Appendix: Complete Matlab Code

% This script is an example of analysis of some 1550nm WFS data taken while
1t does some basic processing and

% measuring a 1m focal length len
% analysis on an AOS _WFS file

S.

close all; clear all; clc; format compact;
R=1.0; %we took this data measureing a 1m focal length lens

Fb="1000mm" ;

% read in the WFS data

[wfs,aois]=LoadWFS(sprintf("%s.wfs",fb));
pixelSize=wfs_pixSizeX; %this camera has square pixels

efl = wfs.separation;

figure; showWFS(aois); axis image;

% convert the slope data from a vector into a 2D grid using the index

% parameters

for ii=1:length(aois);
dx1l(aois(ii).xindex+1,aois(i
dyl(aois(ii).xindex+1,aois(i

end;

figure;

subplot(1,2,1); imagesc(dxl); axi

title("X Slopes©);

subplot(1,2,2); imagesc(dyl); axi

title("Y Slopes™);

.y
i).y

s i

s i

colorbar;

index+1)
index+1)

mage;

mage;

%% calculate the slopes based on theory

aois2=aois;

Xc = 147; % determined impericall
yc = 135; % determined impericall
for ii=1:length(aois);

y
y

colorbar;

colorbar;

aois2(ii).dx = -(aois(ii).xr-xc).*pixelSize./R;
aois2(ii).dy = -(aois(ii).yr-yc).*pixelSize./R;

r = sqrt((aois(ii).xr-xc).~2 + (aois(ii).yr-yc).

aois2(ii).p =
end;

r.~"2 ./ (2*R);

% show the theory-calcualted WFS data

figure; showWFS(aois2);

% convert the theory calculated WFS data into a 2D array

for ii=1:length(aois);
dx2(aois2(ii).xindex+1,ao0is2(

dy2(aois2(ii).xindex+1,ao0is2(i

end;
sf = PV(dx2) ./ PV(dx1)

figure;

subplot(1,2,1); imagesc(dx2); axi
title("Calculated X Slopes™);
subplot(1,2,2); imagesc(dy2); axi
title("Calculated Y Slopes™);

%% now look at the measured phase
%convert the phase into a 2D arra
for ii=1:length(aois);

z1l(aois(ii).xindex+1,aois(ii).yindex+1) =
z2(aois2(ii).xindex+1,aois2(ii). y|ndex+1)

ii).yi
.y

s i

s i

y

mage;

mage;

ndex+1)
index+1)

aois2(ii).dx;
aois2(ii).dy;

colorbar;

colorbar;

I(aois2(ii).-xindex+1l,a0is2(ii).yindex+1l) =

end;
figure;

subplot(1,3,1); imagesc(zl); axis image; colorbar; title("Lab Measured®);
subplot(1,3,2); imagesc(z2); axis image; colorbar; title("Theory Calcualted™);

dz = z1-z2; dz=dz-mean(dz(:)); dz=dz.*(1>0);

%% analyze scale factors

%look at the ratio of the centroid shift to the reported slopes to make

%sure the paramters are correct
ratioExpected = efl/pixelSize
c=1;
for ii=1:length(aois);
if (aois(ii).1>0)
deltaxpix(ii) =
deltaypix(ii) =
slopex(ii) = aoi
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%remove the mean and zero the low
subplot(1,3,3); imagesc(dz); axis image; colorbar; title("Lab - Theory®);

~2) . *pixelSize;

intensities
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slopey(ii) = aois(ii).dy

ratiox(c) = deltaxpix(ii)./slopex(ii);
ratioy(c) = deltaypix(ii)./slopey(ii);
c=c+1;

end;
end;
AverageRatios=[mean(ratiox) mean(ratioy)]

%% look at the image & overlay AOls
%make the measured centroids green stars and
% the reference locations yellow circles
img=imread(sprintf("%s.tif",fb));
img=double(img(:,:,1));
figure; imagesc(img); colormap(gray); axis image; colorbar;
for ii=1:length(aois)
hold on;

plot([xl x2 x2 x1 x1]+1,[yl yl1 y2 y2 y1]+1,°r-");
plot(aois(ii).xc+l,aois(ii).yc+l,"g*");
plot(aois(ii).xr+l1,aois(ii).yr+l1,"yo");

end;

slopeMax = (sqrt(size(img,1l).”2+size(img,2).”2)*pixelSize/2) / R

PV_WF = ((sqrt(size(img,1).-"2+size(img,2).-"2)*pixelSize)."2/4) / (2*R)

%% Fit the slopes to a plane
%since the input wavefront is primarily curvature, we can fit the
Y%wavefront slopes with a plane to determine the curvature
c=1;
for ii=1:length(aois)
if (aois(ii).1>0)
Mx(c, :)=[aois(ii

(¢ c*pixelSize 1];
My(c, :)=[aois(ii

i.

).

i).x

). y *pixelSize 1];
dxv(c)=aois(i dx;
dyv(c)=aois(i dy;

c=c+1;

end;
end;
Mxinv=pinv(Mx);
Myinv=pinv(My);
xcoef = Mxinv * dxv(:)
ycoef = Myinv * dyv(:)
EstimatedROCs = 1./[xcoef(1) ycoef(1)]

% the slope fits

aois3=aois;

for ii=1:length(aois)
aois3(ii).dx = xcoef(l).*aois(ii).xc.*pixelSize + xcoef(2);
aois3(ii).dy = ycoef(l).*aois(ii).yc.*pixelSize + ycoef(2);
% convert to 2D
dx3(aois3(ii).xindex+1l,a0is3(il).yindex+1)
dy3(aois3(ii).xindex+1l,ao0is3(il).yindex+1)

end;

figure;

subplot(1,2,1); imagesc(dx3); axis image; colorbar; title("Fit Slopes X");

subplot(1,2,2); imagesc(dy3); axis image; colorbar; title("Fit Slopes Y");

aois3(ii).dx;
aois3(ii).dy;

% show the difference between the measured and fit slopes

figure;

subplot(1,2,1); imagesc(dx3-dx1l); axis image; colorbar; title("Fit Slopes - Measured Slopes X");
subplot(1,2,2); imagesc(dy3-dyl); axis image; colorbar; title("Fit Slopes - Measured Slopes Y");
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