ACTIVE OPTICAL SYSTEMS

ANOO8

Fitting a Surface with Influence Functions

Author: Justin D. Mansell, Ph.D.
Active Optical Systems, LLC

Revision: 12/26/08

In this application note, we explain how a set
of influence functions can be used to create a
known surface shape. We will do this here by
way of an example piece of Matlab code. The
entire script is in an appendix at the end of
this note, but we will walk through it a section
at a time here to explain what it is doing.

Setup and Showing the DM
Actuator Pattern

This section of the script initializes Matlab and
shows the influence function shape. The
routines LoadDM() and ShowDM() are
available from AOS. They load a .DM file into
a structure array and display the array
respectively. Figure 1 shows the result of the
ShowDM() function.

%this script fits an arbitrary
shape with DM influence functions
close all; clear all; clc;
%rand("seed”,123);

limiting=0;

showlFs=0;

%load the DM configuration

dm = LoadDM("MDM1-32S-001.dm");
figure;

ShowDM(dm) ; axis image;

Figure 1 - Results of the ShowDM()
function in Matlab

Load the Influence Functions

This section of code loads the influence
functions generated by the AOS DMController
code. The user must specify some parameters
of the DM here including the maximum peak-
to-valley motion of the DM (also known as the
focal throw), the diameter of the DM in
meters, the wavelength of the test light in
meters, and the amount of the DM that is
being used for fitting (dmScaleFactor), which
in this case is the recommended central 80%.
The influence functions are stored in a cell
array called IF. The user has the option of
displaying the influence functions by setting

the showlFs variable to a non-zero value
above.

%load influence functions
Files=dir("outputlF*_txt");
Pvdm = 10e-6;
Ddm = 25.4e-3;
wavelength = 0.633e-6;
dmScaleFactor=0.8;
figure;
for ii=1:length(Files);
IF{ii}=csvread(files(ii).name);
nxy = min([size(I1F{ii},1)
size(IF{i11},2)D);
IF{ii} = IF{ii}(1:nxy,1l:nxy);
if (ii==1)
nxy = size(IF{1},1);
dxy = Ddm/(nxy-4);
X = (-nxy/2:1:nxy/2-1)*dxy;
end;
it (showlFs)
clf;
imagesc(x,x, IF{ii}); axis
image; colorbar;
title(ii); pause(0.001);
end;
end;

Create Apertures and Scale IFs

This next section of code uses the information
about the size of the DM and the mesh
spacing to create a 2D grid of radii and then
that is used to create two apertures: one of
the DM itself (apDM) and the other the fit
aperture (apFit). Then the influence functions
are scaled so that the peak to valley sum of all
the influence functions is 10 microns, the
normal throw of a 254 mm diameter
membrane DM.

%create a DM aperture and a fit
aperture

[xx,yy]=meshgrid(x,Xx);

r = sqrt(xx."2+yy."2);

apbM = (r<=bDdm/2);

apFit = (r<=Ddm/2*dmScaleFactor);

%scale the DM IFs so that the sum
of all of them is equal in
amplitude to

%10 waves

dm = 0.0 .* IF{1};

for ii=1:length(IF); dm=dm+IF{ii};
end;

PV = max(max(dm)) - min(min(dm));
for ii=1:length(lF);
IF{ii}=IF{ii}./PV_*PVvdm; end;

Create a Sample Grid

The next section of code creates a set of
samples over the used DM aperture for fitting.
For this code, it is assumed that it is a regular
square grid of points, but almost any grid with
enough points will work. The user specifies
the number of samples per axis over the DM
aperture (nxySample). The code then creates
a 2D array of sample points with one at the
center and removes all the points outside the
used area of the DM. The code checks to see
if there are sufficient points to continue and
then shows the points overlaid on a DM
influence function (Figure 2). Finally, the code
finds the 2D grid points closest to the real-
number sample coordinates.

%create a sample grid

nxySample = 14;

dxySample = Ddm/(nxySample);
xs=(-nxySample/2:1:nxySample/2-
1)*dxySample;
[xxs,yys]=meshgrid(xs,Xxs);
rs=sqrt(xxs.n2+yys.”2);

rSample = rs(:);

xSample = xxs(:z); ySample = yys(:);
ind =
Find(rSample<Ddm/2*dmScaleFactor);
xSample = xSample(ind);

ySample = ySample(ind);

%check 1If enough samples

it (Iength(xSample)<length(1F))
error("Not enough samples for

fitting®);

end;

%show the sample grid on top of the
first IF

figure;

imagesc(x,x, IF{1});

hold on;

-0.01 4

-0.005

0.005

0.01 |

-0.01 -0.005 0 0.005 0.01

Figure 2 - Sample points as red asterisks
overlaid on the first DM influence function

plot(xSample,ySample, "r*=");

%Find the coordinates of samples
for ii=1:length(xSample)
[mv,xi(i1)] = min(abs(x-
xSample(ii)));
[mv,yi(ii)] = min(abs(x-
ySample(ii)));
end;

Creating Poke and Control
Matrices

This next section of code creates the poke and
control matrices. In this example, we are
using phase control, but in most AO
applications slope control is actually used
since the wavefront sensor is usually a
Hartmann sensor and the absolute phase is
not known. This script can be easily modified
to do slope control instead by taking the
gradient of the surfaces and operating on it
instead of operating on the surface itself.

The code starts by creating a poke matrix
(poke) that is a sample of each of the
influence functions at each of the sample
points specified above and displaying it. Then
a pseudo-least-squares inverse of the poke
matrix is generated using a single-value-
decomposition (SVD) technique. This was
done instead of the Matlab function pinv()
because this technique allows us to easily
remove low-gain modes if necessary. The
script plots the svd gains. In this example,
there was not a precipitous drop in the curve,
so we left all the modes in,

Poke Matrix

Figure 3 - Poke and Control Matrices

Control

(modesRemoved=0), but left the code in to
allow the user to change this easily. The
inverted poke matrix is then stored (control)
and displayed (Figure 3).

%sample the influence functions to
create a poke matrix
for i1i=1:1length(IF)
for jj=1:length(xi)
poke(ii,jj) =
IFGiI}aga.yidin):
end;
end;
figure;
imagesc(poke); title("Poke
Matrix®);

%invert the poke matrix to create
the control matrx
[u,ss,Vv]=svd(poke);

sv=diag(ss); gains=sv;

svi = 1.0./sv;

si = zeros(size(ss,2),size(ss,l));
%show the svd gains

figure; semilogy(sv, "*b-");
title("svd gains-AOA recon®);

%remove some modes

modesRemoved = O;

for ii=1:size(svi,l)-modesRemoved;
si(ii,iil) = svi(ii);

end;

control=v*si*u”;

%show the control matrix
figure; imagesc(control);
title("Control™);

Creating an Example Phase Screen

In this example, we created our own phase
screen based on Kolmogorov turbulence
theory. The screen was generated based on a
PSD function that was found on p. 35 of
Robert Tyson’s book Principles of Adaptive
Optics (equation 2.28). The user can specify
the aperture diameter and the D/rO
(Dap_over_r0) and the phase screen is
generated. In the code in the appendix we
left in some commented-out code that is
useful for visualizing the results. For an end-

user of this code, this is the point at which you
might load the desired phase screen. Figure 4
shows an example phase screen generated
from this script. To generate a consistent
phase screen, remove the comment from the
rand() function that seeds the random
number generator in the first section of code.

%% create a phase screen

Dap = 30.0e-2; Dap_over_r0=2;
rO = Dap/Dap_over_rO;

nxy = 128; dxy = Dap/nxy;

Xp = (-nxy/2:1:nxy/2-1)*dxy;
[xxp,yypl=meshgrid(xp,xp);

rp = sqrt(xxp.-"2+yyp-~2);

K = fftshift(rp);

PHIp = (0.023/r0.~(6/3)) .* K.~(-
11/3);

PHIp(1,1)=0;

PHI = sqgrt(PHIp) .*
exp@*2*pi*rand(nxy,nxy));

phi = IFFt2((PHI));

phase = real(phi) ./ (@*pi) .*
wavelength;

figure; Imagesc(xp,Xp,phase); axis
image; title("Phase (waves)®);
colorbar;

hold on;

theta = 0:0.1:2.0*pi;

xcircle = Dap/2 * cos(theta);
ycircle = Dap/2 * sin(theta);
plot(xcircle,ycircle, "r--

", "linewidth",2%);

Phase (meters) x 10°

-0.15
-O.l'

-0.05 0.5
0 0
0.05 0.5
0.1 1

-0.1 0 0.1

Figure 4 - Generated Kolmogorov-like
phase screen

Sampling the Desired Shape and the difference between them. In this
case, we set limiting = 0 in the first section of

This next section of code puts the desired code, so no actuator limiting was used.
shape on the same grid as the influence
functions and then samples it using the same %fit to the desired shape

commands = control®™ * vec”;

sample grid generated_above. We re_moved Ffigure; bar(commands);
the mean over the fit area to avoid any title("Commands®);
significant piston term causing a large
actuator throw. We also add in here potential if (Ol imiting)
magnification between the DM and the 0.5 pimplement limiting at -0.5 to
output aperture (Magnification). " 0 = commands:
commands = cO .* (c0>-0.5) +
%% sample the desired shape with (c0<-0.5).*-0.5;
magnification commands = commands .* (c0<0.5)
Magnification = Dap / Ddm; + (c0>0.5).*0.5;
shape = figure; bar([cO commands cO-
interp2(xp./Magnification, (xp./Magn commands]); title("Limited
ification)",phase,x,(xX)"); Commands®); colormap(jet);
%interpolate onto the same grid o i
shape(Find(isnan(shape)==1))=0; legend("requested”, "limited*, "diffe
rence");
%remove the mean over the fit end;
aperture area
shapeFit = shape .* apFit; Commands
shapeVec = shapeFit(:);
ind = find(shapeVec~=0); 1
shape = shape -
mean(shapeVec(ind)); 0.5
shape = shape .* apFit;
0
%sample 1t on the desired grid 05
for jj=1:length(xi)
vec(dj) = shape(xi(31).yi(di)): 1
end;
5 10 15 20 25 30
Figure 5 - Actuator Commands

Generating DM Commands

This next section of code takes the sampled Constructing the DM Surface and

shape as a vector and multiplies it by the Analysis

control matrix generated earlier to create an

vector of actuator forces or commands. The This final section of code constructs the DM

commands are then displayed as a bar chart surface by doing a sum of the influence

(Figure 5). functions weighted by the commands and
then displays and analyzes the result. The

To simulate throw limitations of the DM, we next section of the code saves the output to a

assumed a 50% throw bias and added code to new DM file that can be loaded into the AOS

limit the DM force range to £50%. Then we software. The line commented out at the end

display the desired forces, the limited forces,

of the file saving allows the user to read in the
output file and display it for verification.

In this case, we found that the phase over the
DM area was 540 nm rms. After subtracting
the DM surface, we the rms difference was
154 nm. Using the Marechal approximation
(Strehl Ratio = exp(—d)rms_radiansz)), we calculated
the Strehl ratio to be 3e-13 uncompensated
and 9.5% compensated at a 633 nm
wavelength (the Marechal approximation
assumptions are clearly invalid for the initial
case).

Figure 6 shows the results generated in this
section. The white circles are the sample
point locations. The difference plot is
aperture with the fit aperture (apFit)
generated above.

%create the resulting DM shape
dm=0.0 .* IF{1};

for ii=1:length(lF);
dm=dm+IF{ii}.*commands(ii); end;

%save the output DM file
maxCounts = 255;
dmf2 = dmf;
cmdAverage = mean(commands);
for ii=1:length(lF);

dmf2(ii).v =
round((commands(ii) - cmdAverage +
0.5) .* maxCounts);

it (dnf2(i1).v>maxCounts)
dmF2(ii1).v=maxCounts; end;

if (dnf2(ii).v<0) dmF2(ii).v=0;
end;

end;
SaveDM("MDM1-32S-001-fit.dm",dmF2);
% this line tests the file output
by displaying the re-read file

% dm2=LoadDM(*MDM1-32S-001-
fit.dm®); nf; ShowDM(dm2);

%show the resulting DM shape
figure;

subplot(1,3,1); imagesc(x,X,shape
.* apbM); axis image; colorbar;
title("Desired Shape®);

hold on; plot(x(xi1),x(yi), wo");
cax = caxis;

subplot(1,3,2); imagesc(x,x,dm);
axis image; colorbar; title("DM
Shape*®);

hold on; plot(x(xi1),x(yi), wo");
caxis(cax); colorbar;
subplot(1,3,3); imagesc(X,x,apFit
.* (shape - dm)); axis image;
colorbar; title("Difference”);
hold on; plot(x(xi1),x(yi), wo");
caxis(cax); colorbar;

%calculate RMS wavefront error and
estimated Strehl ratio

delta = apFit .* (shape - dm);
dv=delta(:); ind = find(dv~=0); dvs
= dv(ind); %look at all the non-
zero elements in vector form
rmswfe_m=sqrt(sum((dvs-

mean(dvs)) .”"2)/length(ind))
rmswfe_rads = rmswfe_m / wavelength
* 2 * pi

SR = exp(-1.0 * (rmswfe_rads)."2)

%look at what the Strehl ratio
woulld be without compensation

delta = apFit .* (shape);
dv=delta(:); ind = find(dv~=0); dvs

Desired Shape x 10°

Difference x 10°

-0.01 -0.01

-0.005 -0.005

0.005 0.005

0.01 0.01

g ol

-0.005 “ ‘;ﬁl‘# o 0
0 Kol 'ri ; 05

0.00 Tt l.
O ('

-0.01-0.005 0 0.005 0.01

-0.01-0.005 0 0.005 0.01

-0.01-0.005 0 0.005 0.01

Figure 6 - Result of fitting the phase screen with DM influence functions.

= dv(ind); %look at all the non-
zero elements iIn vector form
rmswfe_m_uncomp=sqgrt(sum((dvs-
mean(dvs)) .-"2)/length(ind));
rmswfe_rads_uncomp =

rmswfe_m uncomp / wavelength * 2 *
pr;

SR_uncomp = exp(-1.0 *
(rmswfe_rads_uncomp) -"2)

Conclusions

In this application note, we showed how to fit
an arbitrary surface using DM influence
functions. We did the fitting in phase space in
this script, but it can easily be modified to
work in gradient (slope) space or even in
Laplacian (curvature) space. This same idea
can be also easily extended to performing
adaptive optics.

Appendix A: Entire Matlab Code

%this script fits an arbitrary shape with DM influence functions
close all; clear all; clc;

%rand("seed”,123);

limiting=0;

showlFs=0;

%load the DM configuration

dm = LoadDM("MDM1-32S-001.dm");
figure;

ShowDM(dm); axis image;

%load influence functions
Ffiles=dir("outputlF*.txt");
PVdm = 10e-6;
Ddm = 25_4e-3;
wavelength = 0.633e-6;
dmScaleFactor=0.8;
figure;
for ii=1:length(Ffiles);
IF{ii}=csvread(files(ii).name);
nxy = min([size(IF{ii},1) size(IF{ii}.2)D):
IF{ii} = IF{ii}(1:nxy,1l:nxy);
it (ii==1)
nxy = size(IF{1},1);
dxy = Ddm/(nxy-4);
X = (-nxy/2:1:nxy/2-1)*dxy;
end;
iT (showlFs)
clf;
imagesc(x, X, IF{ii}); axis image; colorbar;
title(ii); pause(0.001);
end;
end;

%create a DM aperture and a fit aperture
[xx,yy]l=meshgrid(x,x);

r = sqrt(xx."2+yy."2);

apbM = (r<=Ddm/2);

apFit = (r<=Ddm/2*dmScaleFactor);

%scale the DM IFs so that the sum of all of them is equal in amplitude to
%10 waves

dm = 0.0 .* IF{1};

for 1i=1l:length(IF); dm=dm+IF{ii}; end;

PV = max(max(dm)) - min(min(dm));

for i1i=1:length(IF); IF{ii}=IF{i1i}./PV.*PVdm; end;

%create a sample grid

nxySample = 14;

dxySample = Ddm/(nxySample);
xs=(-nxySample/2:1:nxySample/2-1)*dxySample;
[xxs,yys]=meshgrid(xs,Xxs);
rs=sqrt(xxs.”2+yys.”2);

rSample

rs(:);

xSample = xxs(:); ySample = yys(:);

ind = find(rSample<Ddm/2*dmScaleFactor);
xSample = xSample(ind);

ySample = ySample(ind);

%check 1f enough samples
it (length(xSample)<length(IF))

error("Not enough samples for Ffitting");
end;

%show the sample grid on top of the first IF
figure;

imagesc(x,x, IF{1});

hold on;

plot(xSample,ySample, "r*");

%Find the coordinates of samples

for ii=1:length(xSample)

[mv,xi(i1)] = min(abs(x-xSample(ii)));
[mv,yi(ii)] = min(abs(x-ySample(ii)));
end;

%sample the influence functions to create a poke matrix
for ii=1:length(IF)

for jj=1:length(xi)
poke(ii,jj) = IF{Hi}(xid1).yidid);
end;
end;
figure;
imagesc(poke); title("Poke Matrix®);

%invert the poke matrix to create the control matrx
[u,ss,Vv]=svd(poke);

sv=diag(ss); gains=sv;

svi = 1.0./sv;

si = zeros(size(ss,2),size(ss,1));

%show the svd gains

figure; semilogy(sv, "*b-"); title("svd gains-AOA recon®);

%remove some modes

modesRemoved = O;

for ii=1:size(svi,l)-modesRemoved;
si(ii, 1) = svi(il);

end;

control=v*si*u";

%show the control matrix
figure; imagesc(control); title("Control®);

%% create a phase screen

Dap = 30.0e-2; Dap_over_r0=2;
rO = Dap/Dap_over_rO;

nxy = 128; dxy = Dap/nxy;

Xp = (-nxy/2:1:nxy/2-1)*dxy;

[xxp,yypl=meshgrid(xp,xp);

rp = sqrt(xxp."2+yyp.~2);

K = fftshift(rp);

PHIp = (0.023/r0.~(5/3)) .* K.~(-11/3);

PHIp(1,1)=0;

PHI = sqrt(PHIp) .* exp(*2*pi*rand(nxy,nxy));

%figure; subplot(1,2,1); imagesc(abs(PHI)); colorbar; title("PHI");
%subplot(1,2,2); imagesc(angle(PHI)); colorbar; title("PHI");

phi = IfFt2((PHI));

% fFigure("position”®,[360 278 1032 420D ;

% subplot(1,2,1); imagesc(imag(phi)); colorbar; title("imag");

% subplot(1,2,2); imagesc(real(phi)); colorbar; title("real™);
phase = real(phi) ./ (2*pi) .* wavelength;

figure; Imagesc(xp,Xp,phase); axis image; title("Phase (waves)®); colorbar;
hold on;

theta = 0:0.1:2.0*pi;

%xcircle = Ddm/2 * cos(theta); ycircle = Ddm/2 * sin(theta);
xcircle = Dap/2 * cos(theta); ycircle = Dap/2 * sin(theta);
plot(xcircle,ycircle, " r--","linewidth",2%);

%% sample the desired shape with magnification

Magnification = Dap / Ddm;

shape = interp2(xp./Magnification,(Xp.-/Magnification)”,phase,x,(X)");
%interpolate onto the same grid

shape(find(isnan(shape)==1))=0;

%remove the mean over the fit aperture area
shapeFit = shape .* apFit;

shapeVec = shapeFit(:);

ind = find(shapeVec~=0);

shape shape - mean(shapeVec(ind));

shape shape .* apFit;

%sample it on the desired grid

for jj=1:length(xi)

4 vec(Jj) = shape(xi(3j).yi(i));
end;

%fit to the desired shape
commands = control®™ * vec"®;
figure; bar(commands); title("Commands®);

it (limiting)

%implement limiting at -0.5 to 0.5

c0 = commands;

commands = cO .* (c0>-0.5) + (c0<-0.5).*-0.5;

commands = commands .* (c0<0.5) + (c0>0.5).*0.5;

figure; bar([cO commands cO-commands]); title("Limited Commands®);
colormap(jet);

legend("requested”, "limited”, "difference");
end;

%create the resulting DM shape
dm=0.0 .* IF{1};
for ii=1:length(IF); dm=dm+IF{ii}.*commands(ii); end;

%save the output DM file
maxCounts = 255;
dmf2 = dmf;
cmdAverage = mean(commands) ;
for ii=1:length(lF);
dmf2(ii).v = round((commands(ii) - cmdAverage + 0.5) .* maxCounts);
it (dmf2(ii).v>maxCounts) dmf2(ii).v=maxCounts; end;
it (dmf2Ci1).v<0) dmFf2(ii).v=0; end;
end;
SaveDM("MDM1-32S-001-Ffit.dm",dmf2);
% this line tests the file output by displaying the re-read file
% dm2=LoadDM("MDM1-32S-001-fit.dm"); nf; ShowDM(dm2);

%show the resulting DM shape

figure;

subplot(1,3,1); imagesc(X,x,shape .* apDM); axis image; colorbar;
title("Desired Shape®);

hold on; plot(x(xi1),x(yi), wo");

cax = caxis;

subplot(1,3,2); imagesc(x,x,dm); axis image; colorbar; title("DM Shape®");
hold on; plot(Xxx(xi),x(yi), " "wo");

caxis(cax); colorbar;

subplot(1,3,3); imagesc(X,x,apFit .* (shape - dm)); axis image; colorbar;
title("Difference”);

hold on; plot(x(xi),x(yi), "wo");

caxis(cax); colorbar;

%calculate RMS wavefront error and estimated Strehl ratio

delta = apFit .* (shape - dm);

dv=delta(:); ind = find(dv~=0); dvs = dv(ind); %look at all the non-zero
elements in vector form

rmswfe_m=sqgrt(sum((dvs-mean(dvs)) -~2)/length(ind))

rmswfe_rads = rmswfe_m / wavelength * 2 * pi

SR = exp(-1.0 * (rmswfe_rads).”"2)

%look at what the Strehl ratio would be without compensation

delta = apFit .* (shape);

dv=delta(:); ind = find(dv~=0); dvs = dv(ind); %look at all the non-zero
elements in vector form

rmswfe_m_uncomp=sqgrt(sum((dvs-mean(dvs)) -"2)/length(ind));
rmswfe_rads_uncomp = rmswfe_m uncomp / wavelength * 2 * pi;

SR_uncomp = exp(-1.0 * (rmswfe_rads_uncomp) ."2)

